Tìm GTNN của \(y=3\sqrt{x-1}+4\sqrt{5-x}\) với \(1\le x\le5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bu-nhi-a-cốp-xki ta có:
\(y^2=\left(3\sqrt{x-1}+4.\sqrt{5-x}\right)^2\le\left(3^2+4^2\right)\left(x-1+5-x\right)=100\Rightarrow y\le10\).
Xảy ra đẳng thức khi và chỉ khi \(\frac{3}{4}=\frac{\sqrt{x-1}}{\sqrt{5-x}}\Leftrightarrow\frac{x-1}{5-x}=\frac{9}{16}\Leftrightarrow16x-16=45-9x\Leftrightarrow x=2,44\).
vậy max y = 10 khi và chỉ khi x = 2,44
Áp dụng BĐT Bunhiacopxki ta có :
\(\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le\left(3^2+4^2\right)\left(x-1+5-x\right)\)
\(\Leftrightarrow\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le100\)
\(\Leftrightarrow f\left(x\right)\le10\)
Dấu "=" xảy ra :
\(\Leftrightarrow\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\)
Vậy...
Ta có: \(\left(-x^2+4x+21\right)-\left(-x^2+3x+10\right)=x+11>0\Rightarrow B>0\)
\(B^2=\left(x+3\right)\left(7-x\right)+\left(x+2\right)\left(5-x\right)-2\sqrt{\left(x+3\right)\left(7-x\right)\left(x+2\right)\left(5-x\right)}=\left(\sqrt{\left(x+3\right)\left(5-x\right)}-\sqrt{\left(x+2\right)\left(7-x\right)}\right)^2+2\ge2\)
\(\Rightarrow B\ge\sqrt{2}\)
GTNN của B là \(\sqrt{2}\Leftrightarrow x=\dfrac{1}{3}\)
\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)
Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)
Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
NX \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\)
\(A^2=1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}\)
\(=\frac{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}\)=\(\frac{a^4+2a^3+2a^2+\left(a+1\right)^2}{a^2\left(a+1\right)^2}\)
\(=\frac{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}=\frac{\left(a^2+a+1\right)^2}{a^2\left(a+1\right)^2}\)=\(\left[\frac{a^2+a+1}{a\left(a+1\right)}\right]^2\)suy ra A=\(\frac{a^2+a+1}{a\left(a+1\right)}\)
=\(\frac{a\left(a+1\right)+1}{a\left(a+1\right)}=1+\frac{1}{a\left(a+1\right)}=1+\frac{1}{a}-\frac{1}{a+1}\)
ap dung vao bai ta co =\(\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2012}-\frac{1}{2013}\right)\)
=\(2011+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)= \(2011+\frac{1}{2}-\frac{1}{2013}=2011,499503\)
\(P\sqrt{2}=\sqrt{2x-1+14\sqrt{2x-1}+49}+\sqrt{2x-1+6\sqrt{2x-1}+9}\)
\(=\sqrt{\left(\sqrt{2x-1}+7\right)^2}+\sqrt{\left(\sqrt{2x-1}+3\right)^2}\)
\(=\left|\sqrt{2x-1}+7\right|+\left|\sqrt{2x-1}+3\right|\)
\(=2\sqrt{2x-1}+10\)
Chỉ tính được đến đây, chắc bạn ghi nhầm đề, muốn ra số cụ thể thì trước \(7\sqrt{2x-1}\) hoặc \(3\sqrt{2x-1}\) phải là dấu "-" chứ ko thể là dấu "+"
\(=\sqrt{x-1+2\sqrt{2\left(x-3\right)}}+\sqrt{x-1-2\sqrt{2\left(x-3\right)}}\)
\(=\sqrt{x-1+2\sqrt{2}.\sqrt{\left(x-3\right)}-2+2}+\sqrt{x-1-2\sqrt{2}.\sqrt{\left(x-3\right)}-2+2}\)
\(=\sqrt{x-3+2\sqrt{2}.\sqrt{\left(x-3\right)}+2}+\sqrt{x-3-2\sqrt{2}.\sqrt{\left(x-3\right)}+2}\)
\(=\sqrt{\left(\sqrt{x-3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{x-3}+\sqrt{2}\right|+\left|\sqrt{x-3}-\sqrt{2}\right|\)
\(=\sqrt{x-3}+\sqrt{2}+\sqrt{2}-\sqrt{x-3}\left(3\le x\le5\right)\)
\(=2\sqrt{2}\)
Bài 2
\(P=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{12+2\sqrt{12}+1}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{12}-1}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{4-\sqrt{12}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2}\cdot\sqrt{2}\cdot\sqrt{2+\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{2}\cdot\sqrt{4+2\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{3+2\sqrt{3}+1}}{\left(\sqrt{3}+1\right)}\)
=\(\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{3}+1}{\left(\sqrt{3}+1\right)}=1\)
Vậy P là một số nguyên
\(y^2=-7x+71+24\sqrt{\left(x-1\right)\left(5-x\right)}\\ \)
Mà \(24\sqrt{\left(x-1\right)\left(5-x\right)}\ge0\\ \)
\(y^2\ge-7x+71\ge-35+71=36\\ \)=> \(y\ge6\)
Dấu= xảy ra khi và chỉ khi x=5
Bạn làm vi diệu vậy