cmr với mọi số tự ngiên n phân số 12n+1/2n(n+2)là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét\(12n+1=12n+24-23=12\left(n+2\right)-23\)
\(\Rightarrow\frac{12n+1}{2n\left(n+2\right)}=\frac{12\left(n+2\right)-23}{2n\left(n+2\right)}=\frac{12\left(n+2\right)}{2n\left(n+2\right)}-\frac{23}{2n\left(n+2\right)}=\frac{6}{n}-\frac{23}{2n\left(n+2\right)}\)
Xét\(\frac{23}{2n\left(n+2\right)}\)ta có:
\(2n\left(n+2\right)⋮2\)
=> \(2n\left(n+2\right)\)là số chẵn
mà 23 là số lẻ
\(\Rightarrow\frac{23}{2n\left(n+2\right)}\)Tối giản
\(\Rightarrow\frac{6}{n}-\frac{23}{2n\left(n+2\right)}\)tối giản
Vậy \(\frac{12n+1}{2n\left(n+2\right)}\)Tối giản (ĐPCM)
Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23
=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)
Ta có: 2n (n+2) chia hết cho 2
=> 2n (n+2) là số chẵn
Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản
=> 6 / n - 23 / 2n (n+2) là phân số tối giản
Vậy 12n+1 / 2 (n+2) là phân số tối giản
Sau một hồi tìm hiểu thì mình đã có lời giải r, bạn nào chưa bt thì tham khảo nhé !
Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23
=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)
Ta có: 2n (n+2) chia hết cho 2
=> 2n (n+2) là số chẵn
Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản
=> 6 / n - 23 / 2n (n+2) là phân số tối giản
Vậy 12n+1 / 2 (n+2) là phân số tối giản
b: Vì 12n+1 là số lẻ
và 30n+2 là số chẵn
nên 12n+1/30n+2 là phân số tối giản
Đặt \(d=\left(2n+1,2n^2-1\right)\).
\(\hept{\begin{cases}2n+1⋮d\\2n^2-1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n^2+n⋮d\\2n^2-1⋮d\end{cases}\Rightarrow}\left[\left(2n^2+n\right)-\left(2n^2-1\right)\right]⋮d\)
\(\Rightarrow\left(n+1\right)⋮d\Rightarrow\left[2\left(n+1\right)-\left(2n+1\right)\right]⋮d\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(2n+1,2n^2-1\right)=1\)
Suy ra đpcm.
làm tương tự
Chứng tỏ rằng : phân số 5n+3/3n+2 là phân số tối giản với n thuộc N?
bài làm
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
Xét12�+1=12�+24−23=12(�+2)−2312n+1=12n+24−23=12(n+2)−23
⇒12�+12�(�+2)=12(�+2)−232�(�+2)=12(�+2)2�(�+2)−232�(�+2)=6�−232�(�+2)⇒2n(n+2)12n+1=2n(n+2)12(n+2)−23=2n(n+2)12(n+2)−2n(n+2)23=n6−2n(n+2)23
Xét232�(�+2)2n(n+2)23ta có:
2�(�+2)⋮22n(n+2)⋮2
=> 2�(�+2)2n(n+2)là số chẵn
mà 23 là số lẻ
⇒232�(�+2)⇒2n(n+2)23Tối giản
⇒6�−232�(�+2)⇒n6−2n(n+2)23tối giản
Vậy 12�+12�(�+2)2n(n+2)12n+1Tối giản (ĐPCM)