Tìm \(x\in Z\)để \(\frac{-4}{x-5}\in Z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với x = 1 thì \(A=\frac{3x+2}{x-3}=\frac{3\cdot1+2}{1-3}=\frac{5}{-2}=\frac{-5}{2}\)
Với x = 2 thì \(A=\frac{3x+2}{x-3}=\frac{3\cdot2+2}{2-3}=\frac{8}{-1}=-\frac{8}{1}=-8\)
Với x =\(\frac{5}{2}\)thì : \(A=\frac{3x+2}{x-3}=\frac{3\cdot\frac{5}{2}+2}{\frac{5}{2}-3}=\frac{\frac{15}{2}+2}{\frac{5}{2}-3}=\frac{\frac{19}{2}}{-\frac{1}{2}}=\frac{19}{2}\cdot(-2)=\frac{19}{1}\cdot(-1)=-19\)
b, Ta có : \(\frac{3x+2}{x-3}=\frac{3x-9+11}{x-3}=\frac{3(x-3)+11}{x-3}=3+\frac{11}{x-3}\)
\(\Leftrightarrow11⋮x-3\Leftrightarrow x-3\inƯ(11)=\left\{\pm1;\pm11\right\}\)
Lập bảng :
x - 3 | 1 | -1 | 11 | -11 |
x | 4 | 2 | 14 | -8 |
c,Để suy nghĩ đã
Làm tiếp :v
c, \(B=\frac{x^2+3x-7}{x+3}=\frac{x(x+3)-7}{x+3}=x-\frac{7}{x+3}\)
\(\Rightarrow7⋮x+3\Leftrightarrow x+3\inƯ(7)=\left\{\pm1;\pm7\right\}\)
Lập bảng :
x + 3 | 1 | -1 | 7 | -7 |
x | -2 | -4 | 4 | -10 |
d, Tương tự
a) \(x\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
b) \(x-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow x\in\left\{-6;0;2;8\right\}\)
a) \(\frac{4}{x}\)ϵ Z ↔ 4 chia hết cho x
→ x ϵ Ư( 4 ) = { -4 ; -2 ; -1 ; 1 ; 2 ; 4 }
b) \(\frac{7}{x-1}\) ϵ Z ↔ 7 chia hết cho x
→ x ϵ Ư( 7 ) = { -6 ; 0 ; 2 ; 8 }
Bài làm:
Ta có:
\(M=\frac{xy+y+5}{xy+y+4}=\frac{\left(xy+y+4\right)+1}{xy+y+4}=1+\frac{1}{xy+y+4}\)
Vậy để M là số nguyên thì \(\frac{1}{xy+y+4}\inℤ\)
=> \(1⋮\left(xy+y+4\right)\)
=> \(xy+y+4\inƯ\left(1\right)=\left\{-1;1\right\}\)
Ta xét 2 trường hợp sau:
*TH1
Nếu \(xy+y+4=-1\)
\(\Leftrightarrow x\left(y+1\right)=5\)
Ta có: \(5=1.5=\left(-1\right)\left(-5\right)\)nên ta xét các trường hợp sau:
+Nếu: \(\hept{\begin{cases}x=1\\y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=4\end{cases}\left(tm\right)}}\)
+Nếu: \(\hept{\begin{cases}x=5\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}\left(tm\right)}}\)
+Nếu: \(\hept{\begin{cases}x=-1\\y+1=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-6\end{cases}}}\)(tm)
+Nếu: \(\hept{\begin{cases}x=-5\\y+1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-2\end{cases}\left(tm\right)}}\)
*TH2
Nếu \(xy+x+4=1\Leftrightarrow x\left(y+1\right)=-3\)
Ta có: \(-3=\left(-1\right).3=1.\left(-3\right)\)nên ta xét các trường hợp sau:
+Nếu: \(\hept{\begin{cases}x=1\\y+1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-4\end{cases}\left(tm\right)}}\)
+Nếu: \(\hept{\begin{cases}x=-1\\y+1=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}\left(tm\right)}}\)
+Nếu: \(\hept{\begin{cases}x=3\\y+1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}\left(tm\right)}}\)
+Nếu: \(\hept{\begin{cases}x=-3\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=0\end{cases}}}\)(tm)
Vậy ta có 8 cặp số (x;y) thỏa mãn để M nguyên là: (1;4) ; (5;0) ; (-1;-6) ; (-5;-2) ; (1;-4) ; (-1;2) ; (3;-2) ; (-3;0)
Học tốt!!!!
a, 4C = 12|x|+8/4|x|-5 = 3 + 23/|x|-5 <= 3 + 23/0-5 = -8/5
=> C <= -2/5
Dấu "=" xảy ra <=> x=0
Vậy Min ...
b, Để C thuộc N => 3|x|+2 chia hết cho 4|x|-5
=> 4.(3|x|+2) chia hết cho 4|x|-5
<=> 12|x|+8 chia hết cho 4|x|-5
<=> 3.(|x|+5) + 23 chia hết cho 4|x|-5
=> 23 chia hết chi 4|x|-5 [ vì 3.(4|x|-5) chia hết cho 4|x|-5 ]
Đến đó bạn tìm ước của 23 rùi giải
a, 4C = 12|x|+8/4|x|-5 = 3 + 23/|x|-5 <= 3 + 23/0-5 = -8/5
=> C <= -2/5
Dấu "=" xảy ra <=> x=0
Vậy Min ...
b, Để C thuộc N => 3|x|+2 chia hết cho 4|x|-5
=> 4.(3|x|+2) chia hết cho 4|x|-5
<=> 12|x|+8 chia hết cho 4|x|-5
<=> 3.(|x|+5) + 23 chia hết cho 4|x|-5
=> 23 chia hết chi 4|x|-5 [ vì 3.(4|x|-5) chia hết cho 4|x|-5 ]
Đến đó bạn tìm ước của 23 rùi giải
Để \(\frac{-4}{x-5}\)là một số nguyên
\(\Rightarrow x-5\inƯ\left(-4\right)=\left\{-4,-1,1,4\right\}\)
Với x-5=-4 =>x=1
Với x-5=-1 =>x=4
Với x-5=1 =>x=6
Với x-5=4 =>x=9
Vậy x={1;4;6;9}
Ta có \(\frac{-4}{x-5}\)\(\Rightarrow-4⋮x-5\)\(\Rightarrow x-5\inƯ\left(-4\right)\)
Mà \(Ư\left(-4\right)là-4;-1;1;4\)nên TH1 : x - 5 = - 4 => x = 1
TH2 : x - 5 = -1 => x = 4
TH3 : x - 5 = 1 => x = 6
TH4 : x - 5 = 4 => x = 9