từ 1-102 có ? c/s 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(\frac{1}{101}>0\)
\(\frac{1}{102}>0\)
...............,....
\(\frac{1}{200}>0\)
\(\Rightarrow S>0\left(1\right)\)
Lại có: \(\frac{1}{101}< \frac{1}{100}\)
\(\frac{1}{102}< \frac{1}{100}\)
......................
\(\frac{1}{200}< \frac{1}{100}\)
\(\Rightarrow S< \frac{1}{100}.100\)
\(\Rightarrow S< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow0< S< 1\)
Vậy S ko là số tự nhiên
a, ta có 1/101<1/100; 1/102<1/100;...;1/109<1/100
=> S=1/101+1/102+...+1/109< 1/100+1/100+...+1/100=9/100
=>S<9/100
b,ta thấy S luôn >0
S=1/101+1/102+...+1/200<1/100+1/100+...+1/100=1
=>S<1
=>0<S<1 => S không phải số tự nhiên
Có:\(\frac{1}{101}< \frac{1}{100}\)
\(\frac{1}{102}< \frac{1}{100}\)
........................
\(\frac{1}{109}< \frac{1}{100}\)
=>\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{109}< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
(9 phân số)
\(=>\frac{1}{101}+\frac{1}{102}+...+\frac{1}{109}< \frac{9}{100}\)
S=1/101+1/102+...+1/200
=>S>1/200+1/200+...+1/200=100/200=1/2
S=1/101+1/102+...+1/200
=>S<1/100+1/100+...+1/100=100/100=1
=>1/2<S<1
Ta có: S=1/101 > 1/200
1/102 > 1/200
1/103 > 1/200
........
1/199 > 1/200
1/200 = 1/200
=>1/101 +1/102 +1/103 +.... +1/199 +1/200 > 1/200 + 1/200 +1/200 +..... +1/200
=>1/101 + 1/102 +1/103 +..... +1/200 > 1/200x100 = 1/2
Vậy biểu thức đã cho S > 1/2
Lời giải:
Các số có chứa số 1:
1, 10,11,12,13,14,15,16,17,18,19,21,31,41,51,61,71,81,91,100,101,102
Suy ra có 24 chữ số 1.