K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\)

\(\Rightarrow\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\)

\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

\(\dfrac{2016a-2017b}{2017c+2018d}=\dfrac{2016bk-2017b}{2017dk+2018d}=\dfrac{b\left(2016k-2017\right)}{d\left(2017k+2018\right)}\)

\(\dfrac{2016c-2017d}{2017a+2018b}=\dfrac{2016dk-2017d}{2017bk+2018b}=\dfrac{d\left(2016k-2017\right)}{b\left(2017k+2018\right)}\)

\(\Rightarrow\dfrac{2016a-2017b}{2017c+2018d}=\dfrac{2016c-2017d}{2017a+2018b}\)

\(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7bk^2+5bdk^2}{7bk^2-5bdk^2}=\dfrac{k^2\left(7b+5bd\right)}{k^2\left(7b-5bd\right)}=\dfrac{7b+5bd}{7b-5bd}\)

\(\dfrac{7b^2+5ab}{7b^2-5ab}=\dfrac{7b^2+5kb^2}{7b^2-5kb^2}=\dfrac{b^2\left(7+5k\right)}{b^2\left(7-5k\right)}=\dfrac{7+5k}{7-5k}\)

Hình như sai sai

25 tháng 4 2018

tham khảo bài tương tự này :  

Câu hỏi của so yeoung cheing - Toán lớp 7 - Học toán với OnlineMath

29 tháng 11 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=v\)

\(\Rightarrow\hept{\begin{cases}a=vb\\c=vd\end{cases}}\)( 1 )

Thay (1) vào vế trái , ta có :

\(VT=\frac{2vb+5b}{3vb-4b}=\frac{b\left(2v+5\right)}{b\left(3v-4\right)}=\frac{2v+5}{3v-4}\)( *)

Thay (1) vào vế phải ta có :

\(VP=\frac{2vd+5d}{3vd-4d}=\frac{2v+5}{3v-4}\)(**)

Từ (  * ) và (** )

=> ĐPCM

27 tháng 2 2020

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\)

\(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\)

\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2a+5d}{3c-4d}\)

27 tháng 2 2020

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}-\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)

\(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4d}{3c-4d}\left(=\frac{a}{c}\right)\)

\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(đpcm\right)\)

24 tháng 8 2016

TỈ lệ cần chứng minh 

<br class="Apple-interchange-newline"><div id="inner-editor"></div>2015a2016b2015c2016d =2016a+2017b2016c+2017d 

Vì ab =cd ac =bd  = 2015a2015c =2016b2016d =2016a2016c =2017b2017d 

Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{a}{c}\)=\(\frac{2015a-2016b}{2015c-2016d}\)=\(\frac{2016a+2017b}{2016c+2017d}\)

21 tháng 8 2016

Đặt\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Khi đó: \(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\)

            \(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\)

\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(=\frac{2k+5}{3k-4}\right)\)

10 tháng 12 2017

Từ\(\frac{a}{b}\)=\(\frac{c}{d}\)suy ra \(\frac{a}{c}\)=\(\frac{b}{d}\)( t/c TLT)

Áp dụng tính chất của dãy TSBN ta có:\(\frac{a}{c}\)=\(\frac{b}{d}\)=\(\frac{2a+5b}{2c+5d}\)=\(\frac{3a-4b}{3c-4d}\)

Từ \(\frac{2a+5b}{2c+5d}\)=\(\frac{3a-4b}{3c-4d}\) suy ra\(\frac{2a+5b}{3a-4b}\)=\(\frac{2c+5d}{3c-4d}\)(t/c TLT)

12 tháng 7 2017

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(VT=\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{a\left(7a+5c\right)}{a\left(7a-5c\right)}=\dfrac{7ck+5c}{7ck-5c}=\dfrac{c\left(7k+5\right)}{c\left(7k-5\right)}=\dfrac{7k+5}{7k-5}\left(1\right)\)

\(VP=\dfrac{7b^2+5bd}{7b^2-5bd}=\dfrac{b\left(7b+5d\right)}{b\left(7b-5d\right)}=\dfrac{7dk+5d}{7dk-5d}=\dfrac{d\left(7k+5\right)}{d\left(7k-5\right)}=\dfrac{7k+5}{7k-5}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7b^2+5bd}{7b^2-5bd}\left(đpcm\right)\)

Vậy \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7b^2+5bd}{7b^2-5bd}\)

8 tháng 8 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{2bk+5b}{3bk-4b}=\frac{2dk+5d}{3dk-4d}\)

Xét VT \(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\left(1\right)\)

Xét VP \(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\left(2\right)\)

Từ (1) và (2) ta có Đpcm

 

8 tháng 8 2016

VT là vế trái, VP là vế phải