K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:
Đặt \(\underbrace{111....1}_{100}=a\Rightarrow 9a+1=1\underbrace{000...0}_{100}\)

Khi đó:
\(\underbrace{1111....1}_{100}\underbrace{222....2}=\underbrace{111...1}_{100}\times 1\underbrace{00...0}_{100}+\underbrace{222....2}_{100}\)

\(a(9a+1)+2a=9a^2+3a=3a(3a+1)\) là tích của 2 số
 tự nhiên liên tiếp $3a, 3a+1$

Ta có đpcm.

17 tháng 7 2017

2/ Ta chú ý cái này:

\(10^{100}=999...999+1=9.111...111+1\)

\(222...222=2.111...111\)

Ta đặt \(111...111=n\)

\(\Rightarrow111...111222...222=111...111.10^{100}+222...222\)

\(=111...111.\left(9.111...111+1\right)+2.111...111\)

\(=n\left(9n+1\right)+2n=9n^2+3n=3n\left(3n+1\right)\)

Vậy \(111...111222...222\)là tích của 2 số tự nhiên liến tiếp

17 tháng 7 2017

1/ Ta có: \(p^2-1=\left(p-1\right)\left(p+1\right)\)

Vì p là số nguyên tố lớn hơn 3 nên 

\(\left(p-1\right)\left(p+1\right)\) là tích của 2 số chẵn liên tiếp

\(\Rightarrow\left(p-1\right)\left(p+1\right)⋮8\left(1\right)\)

Vì p nguyên tố lớn hơn 3 nên p có 2 dạng là: \(\orbr{\begin{cases}3k+1\\3k+2\end{cases}}\)

Với \(p=3k+1\)

\(\Rightarrow p^2-1=\left(3k+1\right)^2-1=9k^2+6k=3k\left(3k+2\right)⋮3\)

Với \(p=3k+1\)

\(\Rightarrow p^2-1=\left(3k+2\right)^2-1=9k^2+12k+3=3\left(3k^2+4k+1\right)⋮3\)

\(\Rightarrow p^2-1⋮3\left(2\right)\)

Vì 3 và 8 nguyên tố cùng nhau nên từ (1) và (2)

\(\Rightarrow p^2-1⋮\left(3.8=24\right)\)

21 tháng 8 2015

ở trong dòng chữ xanh ý!

14 tháng 7 2016

1111...12222...2

(100 c/s 1)(100 c/s 2)

= 1111....1000...0 + 2222...2

(100 c/s 1)(100 c/s 0)(100 c/s 2)

= 1111...1 x 1000...0 + 1111...1 x 2

(100 c/s 1)   (100 c/s 0)(100 c/s 1)

= 1111...1 x (1000...0 + 2)

(100 c/s 1) (100 c/s 0)

= 1111...1 x 1000...02

(100 c/s 1) (99 c/s 0)

= 1111...1 x 3 x 3333...34

(100 c/s 1)       (99 c/s 3)

= 3333...3 x 3333...34

(100 c/s 3)   (99 c/s 3)

Chứng tỏ ...

Chú ý: từ bài này ta có thể phát triển thành bài nâng cao như sau: chứng tỏ rằng số 1111...12222...2 là tích 2 số nguyên liên tiếp

                                                                                                                          (n c/s 1)(n c/s 2)