cho a,b là 2 số thực thỏa mãn a+b=2
chứng minh rằng a4+b4>=a3+b3
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. b3+b= 3
(b3+b)=3
b.(3+1)=3
b. 4= 3
b=\(\dfrac{3}{4}\)
a3+a= 3 b3
(a3+a)=3
a.(3+1)=3
a. 4= 3
a=\(\dfrac{3}{4}\)
2
Lời giải:
$a+b+c=0\Rightarrow a+b=-c$
Ta có:
$a^3+b^3+c^3=(a+b)^3-3a^2b-3ab^2+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=(-c)^3+3abc+c^3=3abc$ chứ không phải bằng $0$ nhé.
BĐT \(\Leftrightarrow a^3-b^3+a^2b-ab^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+ab\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)^2\ge0\) (luôn đúng do \(a\geq b\)).
Có : \(a^4+b^4\ge a^3+b^3\)
\(\Leftrightarrow2\left(a^4+b^4\right)\ge\left(a^3+b^3\right)\left(a+b\right)\) (Vì a + b = 2)
\(\Leftrightarrow2a^4+2b^4\ge a^4+a^3b+ab^3+b^4\)
\(\Leftrightarrow a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3.\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2.\left(a^2-ab+b^2\right)\ge0\) (đúng)
\(\Rightarrow a^4+b^4\ge a^3+b^3\)
Đẳng thức xảy ra
<=> a = b = 1