K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2022

thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa

Bài 2: Ta có:

\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ

\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).

Thay vào tìm được y...

9 tháng 9 2023

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

19 tháng 3 2019

Vì \(105\)lẻ \(\Rightarrow2a+5b+1\)lẻ và \(2^{\left|a\right|}+a^2+a+b\)lẻ

\(2x\)chẵn; \(2x+5y+1\)lẻ \(\Rightarrow5y\)chẵn \(\Rightarrow\)y chẵn

\(2^{\left|a\right|}+a^2+a+b\)lẻ; \(a^2+a+b=a\left(a+1\right)+b\)chẵn \(\Rightarrow2^{\left|a\right|}\)lẻ \(\Rightarrow x=0\)

Với \(a=0\)

\(\Leftrightarrow\)\(\left(5b+1\right)\left(1+b\right)=105\)

\(\Leftrightarrow\)...(Phần này bạn tự nhân vào rồi phân tích nha)

\(\Leftrightarrow\)\(\left(b+\frac{3}{5}\right)^2-\left(\frac{25}{3}\right)^2=0\)

\(\orbr{\begin{cases}b+\frac{3}{5}=\frac{23}{5}\\b+\frac{3}{5}=\frac{-23}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}b=4\\b=\frac{-26}{5}\notin Z\left(loai\right)\end{cases}}\)

Vậy nghiệm phương trình: \(x=0;y=4\)

2 tháng 12 2021

Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2}      (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
        [2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2}  thì xy đạt giá trị nhỏ nhất.