E=-1/3.(1+2+3)-1/4.(1+2+3+4)-...-1/50.(1+2+3+4+...+50)
Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=2+4+6+8+...+50\)
Số các số hạng của \(C\) là:
\(\left(50-2\right):2+1=25\left(số\right)\)
Tổng \(C\) bằng:
\(\left(50+2\right)\cdot25:2=650\)
\(---\)
\(D=1+2+3+4+...+200\)
Số các số hạng của \(D\) là:
\(\left(200-1\right):1+1=200\left(số\right)\)
Tổng \(D\) bằng:
\(\left(200+1\right)\cdot200:2=20100\)
\(---\)
\(E=1+4+7+10+...+100\)
Số các số hạng của \(E\) là:
\(\left(100-1\right):3+1=34\left(số\right)\)
Tổng \(E\) bằng:
\(\left(100+1\right)\cdot34:2=1717\)
\(Toru\)
Khoảng cách giữa 2 số hạng liên tiếp ở tổng A là: 2
Số số hạng của tổng C là:
(50 - 2) : 2 + 1 = 25 (số hạng)
Tổng C có giá trị là:
(2 + 50) x 25 : 2 = 650
-----------------------------------------
Số số hạng của tổng D là: 200
Tổng D có giá trị là:
(1 + 200) x 200 : 2 = 20100
----------------------------------------
Khoảng cách giữa 2 số hạng liên tiếp của tổng E là: 3
Số số hạng của tổng E là:
(100 - 1) : 3 + 1 = 34 (số hạng)
Tổng E có giá trị là:
(1 + 100) x 34 : 2 = 1717
Đáp số: C = 650
D = 20100
E = 1717
\(E=-\dfrac{1}{3}\cdot\left(1+2+3\right)-\dfrac{1}{4}\left(1+2+3+4\right)-...-\dfrac{1}{50}\left(1+2+3+...+50\right)\)
\(=\dfrac{-1}{3}\cdot\dfrac{3\cdot4}{2}-\dfrac{1}{4}\cdot\dfrac{4\cdot5}{2}-...-\dfrac{1}{50}\cdot\dfrac{50\cdot51}{2}\)
\(=\dfrac{-4}{2}-\dfrac{5}{2}-...-\dfrac{51}{2}\)
\(=\dfrac{-\left(4+5+...+51\right)}{2}\)
\(=\dfrac{-\left(51+4\right)\cdot\dfrac{48}{2}}{2}=-\dfrac{1320}{2}=-660\)
\(C=-\left[\dfrac{1}{3}\cdot\dfrac{\left(3+1\right)\cdot3}{2}+\dfrac{1}{4}\cdot\dfrac{\left(4+1\right)\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{\left(50+1\right)\cdot50}{2}\right]\\ C=-\left(\dfrac{1}{3}\cdot\dfrac{4\cdot3}{2}+\dfrac{1}{4}\cdot\dfrac{5\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{51\cdot50}{2}\right)\\ C=-\left(2+\dfrac{5}{2}+...+\dfrac{51}{2}\right)\\ C=-\dfrac{4+5+...+51}{2}=-\dfrac{\dfrac{\left(51+4\right)\left(51-4+1\right)}{2}}{2}=-\dfrac{55\cdot48}{4}=-660\)
Bài này mình không tính nhanh được, còn nếu tính bình thường thì:
Chắc bạn đã biết cách tính tổng của dãy số cách đều, ta có: \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
Do đó tổng cần tìm của bạn là:
\(S=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+50}\)
\(S=\frac{1}{\frac{2\cdot3}{2}}+\frac{1}{\frac{3\cdot4}{2}}+\frac{1}{\frac{4\cdot5}{2}}+...+\frac{1}{\frac{50\cdot51}{2}}=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{50\cdot51}\)
Vậy, \(\frac{1}{2}S=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{50\cdot51}\)
\(\frac{1}{2}S=\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+\frac{5-4}{4\cdot5}+...+\frac{51-50}{50\cdot51}\)
\(\frac{1}{2}S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}=\frac{1}{2}-\frac{1}{51}=\frac{51-2}{2\cdot51}=\frac{49}{2\cdot51}\)
Vậy \(S=\frac{49}{51}\)
Bài này chắc không phải lớp 4 nhé bạn!
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=\(\frac{1}{2}-\frac{1}{50}\)
=\(\frac{12}{25}\)
Dấu chấm là dấu nhân,bạn bít rồi đúng ko
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{2}-\frac{1}{50}=\frac{25}{50}-\frac{1}{50}=\frac{24}{50}=\frac{12}{25}\)
Công thức : \(\frac{a}{b\left(b+a\right)}=\frac{1}{b}-\frac{1}{b+a}\)
\(\frac{2a}{b\left(b+a\right)\left(b+2a\right)}=\frac{1}{b\left(b+a\right)}-\frac{1}{\left(b+a\right)\left(b+2a\right)}\)
\(\frac{3a}{b\left(b+a\right)\left(b+2a\right)\left(b+3a\right)}=\frac{1}{b\left(b+a\right)\left(b+2a\right)}-\frac{1}{\left(b+a\right)\left(b+2a\right)\left(b+3a\right)}\)