cho 3 số tự nhiên a,b,c khác 0 chứng tỏ rằng nếu a là bội của b; b là bội của c thì a là bội của c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a là bội của b
=> a chia hết cho b
=> a = bk
Mà b chia hết cho c
=> b = cq
=> a = bk = cq.k chia hết cho c
=> a chia hết cho c
=> a là bội của c
=> Đpcm
Có a là bội của b, b là bội của c
=> \(a⋮b\)và \(b⋮c\)
=> \(a⋮b⋮c\)
=> \(a⋮c\)
=> a là bội của c
Có a là bội của b =>a\(⋮\)b ( dấu \(⋮\)là chia hết nha )
Có b là bội của c =>b\(⋮\)c
Có a\(⋮\)b ,b\(⋮\)c =>a\(⋮\)c
=> a là bội của c
Theo bài ta có :
\(a\) là \(B\left(b\right)\) \(\Leftrightarrow a=b.q\left(q\in Z\right)\left(1\right)\)
\(b\) là \(B\left(c\right)\) \(\Leftrightarrow b=c.q_1\left(q_1\in N\right)\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta có :
\(a=c.q.q_1\)
\(\Leftrightarrow a⋮c\)
\(\Leftrightarrow a\) là \(B\left(c\right)\)
\(\Leftrightarrowđpcm\)
Tử :Vì a là stn khác 0 => trong 2 số a và a+1 có 1 số chẵn => a (a+1) là số chẵn =>a (a+1) + 2024 là số chẵn => a(a+1) + 2024 chia hết cho 2
Mẫu :+)Nếu b+c chẵn thì bc(b+c) chẵn => bc(b+c) chia hết cho 2
+)Nếu b+c lẻ thì trong 2 số b và c có 1 số chẵn và 1 số lẻ=> bc(b+c) chẵn =>bc(b+c) chia hết cho 2
Vì cả tử và mẫu đều chia hết cho 2 => phân số đó chưa tối giản
a là bội của b => a = b.q ( q là số tự nhiên khác 0) (1)
b là bôị của c => b = c.t ( t là số tự nhiên khác 0) (2)
Thay (2) vào (1) ta có: a = c.t.q => a chia hết cho c
=> a là bội của c (đpcm)
Theo đề bài
a=m.b (m là số nguyên)
b=n.c (n số nguyên)
=> a=m.n.c
Do m,n là số nguyên => m.n là số nguyên => a là bội của c