Cho ΔABC vuông tại A (AB < AC), M là trung điểm của BC. Gọi D là điểm đối xứng của A qua M. C) vẽ K đối xứng với A qua E. Chứng minh: K và D đối xứng qua B.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Tứ giác $AMKN$ có 3 góc vuông $\widehat{A}=\widehat{M}=\widehat{N}=90^0$ nên $AMKN$ là hình chữ nhật.
b.
Xét tam giác $AEM$ và $AKM$ có:
$MA$ chung
$\widehat{AME}=\widehat{AMK}=90^0$
$EM=KM$ (do $E,K$ đối xứng nhau qua $M$)
$\Rightarrow \triangle AEM=\triangle AKM$ (c.g.c)
$\Rightarrow \widehat{EAM}=\widehat{KAM}(1)$
Tương tự:
$\triangle AKN=\triangle ADN$ (c.g.c)
$\Rightarrow \widehat{DAN}=\widehat{KAN}(2)$
Từ $(1); (2)\Rightarrow \widehat{EAM}+\widehat{MAN}+\widehat{DAN}=\widehat{KAM}+\widehat{MAN}+\widehat{KAN}=2\widehat{MAN}=2.90^0=180^0$
Hay $\widehat{EAD}=180^0$
$\Rightarrow E, A, D$ thẳng hàng.
a) Tứ giác \(AHMK\) có \(\widehat{HAK}=\widehat{MHA}=\widehat{MKA}=90^o\)do đó tứ giác này là hình chữ nhật.
b) Tứ giác \(AMBE\) là hình thoi do có hai đường chéo vuông góc, cắt nhau tại trung điểm mỗi đường. Do đó \(BM\) song song với \(AE\), \(BM=AE\).
Tương tự \(MC\) song song với \(AF\), \(MC=AF\).
Suy ra \(E,A,F\) thẳng hàng (theo tiên đề Ơ-clit về đường thẳng song song)
và \(AE=AF\).
Do đó \(E\) đối xứng với \(F\) qua \(A\).
c) \(BC=2AM=10\left(cm\right)\).
\(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)
d) Để hình chữ nhật \(AHMK\) là hình vuông thì \(AM\) là đường phân giác của góc \(\widehat{HAK}\).
Khi đó tam giác \(ABC\) có \(AM\) là đường trung tuyến đồng thời là đường cao nên tam giác \(ABC\) cân tại \(A\).
Vậy tam giác \(ABC\) vuông cân tại \(A\).
e) Gợi ý: Dễ dàng chứng minh được tứ giác \(BEFC\) là hình bình hành (từ hai tứ giác \(BEAM,MAFC\) là hình thoi) suy ra hai đường chéo cắt nhau tại trung điểm mỗi đường, mà lại có \(AM\) là đường trung bình. Từ đó ta suy ra đpcm.
a: Xét tứ giác ABDC có
E là trung điểm của BC
E là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Tứ giác ADBM là hình thoi ⇒ AM // DB và AM = AD
Hay AM // BC và AM = AD (1)
Tứ giác ADCN là hình thoi ⇒ AN // DC và AD = AN
Hay AN // BC và AN = AD (2)
Từ (1) và (2) suy ra: AM trùng với AN hay M, A, N thẳng hàng
Và AM = AN nên A là trung điểm của MN
Vậy điểm M và điểm N đối xứng qua điểm A.
a: D đối xứng với M qua AB
nên DM vuông góc với AB tại trung điểm của DM
=>E là trung điểm của DM và AB là phân giác của góc DAM(2)
=>AD=AM; BD=BM
mà DA=DB
nên AD=AM=BD=BM
D đối xứng với N qua AC
nên AC vuông góc với DN tại trung điểm của DN
=>AC là phân giác của góc NAD(1) và F là trung điểm của DN
Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
nên AEDF là hình chữ nhật
b: Từ (1), (2) suy ra góc MAN=2*90=180 độ
=>M,A,N thẳng hàng
mà AM=AN
nên A là trung điểm của MN
c: Để AEDF là hình vuông thì AD là phân giác của góc FAE
mà AD là trung tuyến ứng với BC
nên ΔABC cân tại A
=>AB=AC
ĐIểm E ở đâu vậy bạn?