K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:
a. Tứ giác $AMKN$ có 3 góc vuông $\widehat{A}=\widehat{M}=\widehat{N}=90^0$ nên $AMKN$ là hình chữ nhật.

b.

Xét tam giác $AEM$ và $AKM$ có:
$MA$ chung

$\widehat{AME}=\widehat{AMK}=90^0$
$EM=KM$ (do $E,K$ đối xứng nhau qua $M$)

$\Rightarrow \triangle AEM=\triangle AKM$ (c.g.c)

$\Rightarrow \widehat{EAM}=\widehat{KAM}(1)$

Tương tự:

$\triangle AKN=\triangle ADN$ (c.g.c)

$\Rightarrow \widehat{DAN}=\widehat{KAN}(2)$

Từ $(1); (2)\Rightarrow \widehat{EAM}+\widehat{MAN}+\widehat{DAN}=\widehat{KAM}+\widehat{MAN}+\widehat{KAN}=2\widehat{MAN}=2.90^0=180^0$

Hay $\widehat{EAD}=180^0$

$\Rightarrow E, A, D$ thẳng hàng.

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Hình vẽ:

DD
25 tháng 12 2022

a) Tứ giác \(AHMK\) có \(\widehat{HAK}=\widehat{MHA}=\widehat{MKA}=90^o\)do đó tứ giác này là hình chữ nhật. 

b) Tứ giác \(AMBE\) là hình thoi do có hai đường chéo vuông góc, cắt nhau tại trung điểm mỗi đường. Do đó \(BM\) song song với \(AE\)\(BM=AE\).

Tương tự \(MC\) song song với \(AF\)\(MC=AF\).

Suy ra \(E,A,F\) thẳng hàng (theo tiên đề Ơ-clit về đường thẳng song song) 

và \(AE=AF\).

Do đó \(E\) đối xứng với \(F\) qua \(A\).

c) \(BC=2AM=10\left(cm\right)\).

\(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)

d) Để hình chữ nhật \(AHMK\) là hình vuông thì \(AM\) là đường phân giác của góc \(\widehat{HAK}\).

Khi đó tam giác \(ABC\) có \(AM\) là đường trung tuyến đồng thời là đường cao nên tam giác \(ABC\) cân tại \(A\).

Vậy tam giác \(ABC\) vuông cân tại \(A\).

e) Gợi ý: Dễ dàng chứng minh được tứ giác \(BEFC\) là hình bình hành (từ hai tứ giác \(BEAM,MAFC\) là hình thoi) suy ra hai đường chéo cắt nhau tại trung điểm mỗi đường, mà lại có \(AM\) là đường trung bình. Từ đó ta suy ra đpcm. 

 

13 tháng 12 2021

a: Xét tứ giác ABDC có 

E là trung điểm của BC

E là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

19 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tứ giác ADBM là hình thoi ⇒ AM // DB và AM = AD

Hay AM // BC và AM = AD (1)

Tứ giác ADCN là hình thoi ⇒ AN // DC và AD = AN

Hay AN // BC và AN = AD (2)

Từ (1) và (2) suy ra: AM trùng với AN hay M, A, N thẳng hàng

Và AM = AN nên A là trung điểm của MN

Vậy điểm M và điểm N đối xứng qua điểm A.

16 tháng 12 2022

a: D đối xứng với M qua AB

nên DM vuông góc với AB tại trung điểm của DM

=>E là trung điểm của DM và AB là phân giác của góc DAM(2)

=>AD=AM; BD=BM

mà DA=DB

nên AD=AM=BD=BM

D đối xứng với N qua AC

nên AC vuông góc với DN tại trung điểm của DN

=>AC là phân giác của góc NAD(1)  và F là trung điểm của DN

Xét tứ giác AEDF có 

góc AED=góc AFD=góc FAE=90 độ

nên AEDF là hình chữ nhật

b: Từ (1), (2) suy ra góc MAN=2*90=180 độ

=>M,A,N thẳng hàng

mà AM=AN

nên A là trung điểm của MN

c: Để AEDF là hình vuông thì AD là phân giác của góc FAE

mà AD là trung tuyến ứng với BC

nên ΔABC cân tại A

=>AB=AC