tính giá trị của biểu thức :
x^2-10xy+25y^4 tại x = 105 , y = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=5\left(x^2+2xy+y^2\right)-10y^2+5=5\left(x+y\right)^2-10y^2+5\\ =5\left(1+2\right)^2-10\cdot4+5=45-40+5=10\\ b,=7\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(7-x+y\right)\\ =\left(2-2\right)\left(7-2+2\right)=0\)
b: \(=7\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(7-x+y\right)=0\)
a) ( 3x3 + 4x2y) : x2 - ( 10xy + 15y2) : (5y)
= ( 3x + 4y) - ( 2x + 3y)
= 7xy - 5xy
thay x = 2,y= -5 vào biểu thức,ta có:
{7.2.(-5)} - { 7.2.(-5)} = -70b) (3x4 + 1/3x2
Trả lời:
B = 9x2 + 25y2 - 30xy = ( 3x )2 - 2.3x.5y + ( 5y )2 = ( 3x - 5y )2
Thay x = 40; y = 4 vào B, ta có:
B = ( 3.40 - 5.4 )2 = ( 120 - 20 )2 = 1002 = 10000
a) \(P=x\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(x+y\right)=x^2-y^2=5^2-4^2=9\)
b) \(Q=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=0\)
\(x^2-10xy+25y^4\\ =x^2-2.5.x.y+\left(5y^2\right)^2\\ =\left(x-5y^2\right)^2\)
Thay \(x=105,y=5\) vào biểu thức ta được:
\(\left(105-5.5^2\right)^2\\ =\left(105-5.25\right)^2\\ =\left(-23\right)^2\\ =529\)
x^2-10xy+25y^4 = (x-5y)^2
thay x=105, y=5 ta được (105-5.5)^2=80^2=6400