cho ΔABC vuông tại A ( AB<AC). Kẻ AH ⊥BC tại H. Qua B kẻ đường thẳng ⊥ AB, cắt đường thẳng AH tại D. Tia AB và tia CD cắt nhau tại E.
a, CM BE/BA=DE/DC
b, qua E kẻ đường thẳng // AC. đường thẳng này lần lượt cắt các đoạn thẳng AD,BC tại I,K. CM EI=EK
c, gọi N là giao điểm của EH và AC, gọi Q là giao điểm của DN và BC. Gọi P là giao điểm của BN và AD. CM NA=NC, PQ//BD
a: BD\(\perp\)BA
CA\(\perp\)BA
Do đó: BD//CA
Xét ΔEAC có BD//AC
nên \(\dfrac{EB}{BA}=\dfrac{ED}{DC}\)
b:
AC//BD
BD//IK
Do đó: AC//IK
Xét ΔAEI có BD//EI
nên \(\dfrac{DB}{EI}=\dfrac{AB}{AE}\)(1)
Xét ΔCEK có DB//EK
nên \(\dfrac{DB}{EK}=\dfrac{CD}{CE}\left(2\right)\)
\(\dfrac{EB}{EA}=\dfrac{DE}{DC}\)
=>\(\dfrac{EB+EA}{EA}=\dfrac{DE+DC}{DC}\)
=>\(\dfrac{AB}{EA}=\dfrac{CE}{DC}\)(3)
Từ (1),(2),(3) suy ra \(\dfrac{DB}{EI}=\dfrac{DB}{EK}\)
=>EI=EK