K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

Lời giải:

Đặt $\frac{x}{5}=\frac{y}{-3}=\frac{z}{2}=k\Rightarrow x=5k; y=-3k; z=2k$
Khi đó:

$x+2y-3z=10$

$\Rightarrow 5k+2(-3k)-3(2k)=10$

$\Rightarrow 5k-6k-6k=10$

$\Rightarrow -7k=10\Rightarrow k=\frac{-10}{7}$

$x=5k=\frac{-50}{7}; y=-3k=\frac{30}{7}; z=2k=\frac{-20}{7}$

25 tháng 12

5+2*(-3)-(-3*2)

5+(-6)-6

-1-6

=-7 

 

22 tháng 6 2023

Bài `10`

`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`

ADTC dãy tỉ số bằng nhau ta có :

`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`

`=> x/2=2=>x=2.2=4`

`=>y/3=2=>y=2.3=6`

`b,` Ta có : `2x=5y=>x/5=y/2`

ADTC dãy tỉ số bằng nhau ta có :

`x/5=y/2=(x+y)/(5+2)=-42/7=-6`

`=>x/5=-6=>x=-6.5=-30`

`=>y/2=-6=>y=-6.2=-12`

Bài `11`

`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`

ADTC dãy tỉ số bằng nhau ta có :

`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`

`=>x/3=2=>x=2.3=6`

`=>y/4=2=>y=2.4=8`

`=>z/6=2=>z=2.6=12`

Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`

`d,` Ta có :

`x/2=y/3=>x/4=y/6`

`y/2=z/3=>y/6=z/9`

`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`

ADTC dãy tỉ số bằng nhau ta có :

`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`

`=>x/4=1=>x=1.4=4`

`=>y/6=1=>y=1.6=6`

`=>z/9=1=>z=1.9=9`

29 tháng 8 2017

bài 1

a)\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\)
\(\Rightarrow\frac{5x}{5.7}=\frac{2y}{2.3}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
\(\Rightarrow x=3.7=21;y=3.3=9\)

Bài dưới tướng tự nhé

3 tháng 12 2017

a) Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\)

               \(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-2y+3z}{15-2.10+3.6}=\frac{65}{13}=5\)

\(\Rightarrow x=5.15=75\)

      \(y=5.10=50\)

      \(z=5.6=30\)

b) Ta có: \(\frac{x}{5}=\frac{y}{3};\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{x}{35}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{35+21-12}=\frac{132}{44}=3\)

\(\Rightarrow x=3.35=105\)

      \(y=3.21=63\)

      \(z=3.12=36\)

c) Gọi \(\frac{x}{4}=\frac{y}{7}=k\)

\(\Rightarrow x=4k;y=7k\)

\(\Rightarrow x.y=4k.7k=28k^2=112\)

\(\Rightarrow k^2=112:28=4\)

\(\Rightarrow k=\pm2\)

\(\Rightarrow x=\pm2.4=\pm8\)

     \(y=\pm2.7=\pm14\)

19 tháng 7 2017

x : y : z = 3 : 5 :( -2 )
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{4}=-4\)

\(\Rightarrow x=-12;y=-20;z=8\)

1 tháng 3 2018

Bài 2: 

Câu a) Bn chia ra thành 2 TH

Khi \(x-2y=5\)và khi \(x-2y=-5\)

Câu b) thì dễ rồi đấy

Câu c) Bn vào link này https://dainghia2004.wordpress.com/2016/12/02/ti-le-thuc-day-ti-so-bang-nhau/

Ở đó có các dạng bài về tính chất dãy tỉ số = nhau đó

1 tháng 3 2018

         \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.9-2^{n-1}.8+3^n-2^{n-1}.2\)

\(=3^n\left(9+1\right)-2^{n-1}\left(8+2\right)\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)\) \(⋮\) \(10\)

12 tháng 10 2021

a) Áp dụng t/x dtsbn:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-5}=\dfrac{3x}{6}=\dfrac{2z}{-10}=\dfrac{3x-2z}{6+10}=\dfrac{48}{16}=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.3=9\\z=3.\left(-5\right)=-15\end{matrix}\right.\)

b) \(\dfrac{x}{10}=\dfrac{y}{-13}=\dfrac{z}{17}=\dfrac{2y}{-26}=\dfrac{3z}{51}=\dfrac{2y-3z}{-26-51}=\dfrac{77}{-77}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=10.\left(-1\right)=-10\\y=\left(-13\right).\left(-1\right)=13\\z=17.\left(-1\right)=-17\end{matrix}\right.\)

12 tháng 10 2021

a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-5}\Rightarrow\dfrac{3x}{6}=\dfrac{y}{3}=\dfrac{2z}{-10}\)

Áp dụng t/c của DTSBN, ta có: \(\dfrac{3x-2z}{6-\left(-10\right)}=\dfrac{48}{16}=3\)

\(\dfrac{x}{2}=3\Rightarrow x=6\)

\(\dfrac{y}{3}=3\Rightarrow y=9\)

\(\dfrac{z}{-5}=3\Rightarrow z=-15\)

 

28 tháng 10 2021

Vì \(\hept{\begin{cases}3x=5y\\2y=-3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{3}\\\frac{y}{-3}=\frac{z}{2}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{-2}\end{cases}}\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{-2}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{-2}=\frac{x+y-z}{5+3-\left(-2\right)}=\frac{2}{10}=\frac{1}{5}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{5}.5=1\\y=\frac{1}{5}.3=\frac{3}{5}\\z=\frac{1}{5}.\left(-2\right)=\frac{-2}{5}\end{cases}}\)

28 tháng 10 2021

Ta có : 

\(3x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{3}\)

\(2y=-3z\Leftrightarrow\frac{y}{3}=-\frac{z}{2}\)

Do đó : 

\(\frac{x}{5}=\frac{y}{3}=-\frac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{3}=-\frac{z}{2}=\frac{x+y-z}{5+3-2}=\frac{2}{6}=\frac{1}{3}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{1}{3}\Rightarrow x=\frac{5}{3}\\\frac{y}{3}=\frac{1}{3}\Rightarrow y=1\\-\frac{z}{2}=\frac{1}{3}\Rightarrow-\frac{2}{3}\end{cases}}\)

Vậy ... 

28 tháng 10 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{11}=3\)

Do đó: x=6; y=9; z=15