Chứng minh rằng:
(n^2 - 1) chia hết cho 8 với n là số tự nhiên lẻ bất kỳ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này có thểgiải thế này nè.
xét n chẵn, ta có n^2 +1 là số lẻ --> k chia hết cho 8 với mọi n chẵn.
xét n lẻ, ta có n có thể đc viết dưới dạng, n=2k + 1 (k thuộc N)
các số chia hết cho 8 có dạng 8k',
ta xét 2 đồ thị y = (2x+1)^2 + 1 và y = 8x, xét pt hoành độ giao điểm (2x +1)^2 + 1 = 8x ta được pt vô nghiệm, từ đó suy ra không tìm được k để n^2 + 1 chia hết cho 8.
vậy thì n^+1 k chia hết cho 8 với n chẳn và lẻ, vậy nên cúi cùng nó k chia hết cho 8
\(\left(n^2-1\right)=\left(n-1\right)\left(n+1\right)\)
Vì \(n\) lẻ \(\Rightarrow n+1\) và \(n-1\) chẵn
\(n+1-\left(n-1\right)=n+1-n+1=2\)
\(\Rightarrow n+1\) và \(n-1\) là hai số chẵn liên tiếp
\(\Rightarrow\left\{{}\begin{matrix}n-1=2k\\n+1=2\left(k+1\right)\end{matrix}\right.\left(k\in N\right)\)
\(k+1-k=1\)
\(\Rightarrow k\) và \(k+1\) là hai số tự nhiên liên tiếp nên trong hai số \(k\) và \(k+1\) có một số chẵn
Nếu \(k\) là số chẵn:
\(\Rightarrow k=2a\left(a\in N\right)\\ \left\{{}\begin{matrix}n-1=2k=2\cdot2a=4a\\n+1=2\left(k+1\right)\end{matrix}\right.\Rightarrow\left(n-1\right)\left(n+1\right)=4a\cdot2\left(k+1\right)=8a\left(k+1\right)⋮8\)
Nếu \(k\) là số lẻ:
\(\Rightarrow k+1\) là số chẵn
\(\Rightarrow k+1=2b\left(b\in N\right)\\ \left\{{}\begin{matrix}n-1=2k\\n+1=2\left(k+1\right)=2\cdot2b=4b\end{matrix}\right.\Rightarrow\left(n-1\right)\left(n+1\right)=2k\cdot4b=8kb⋮8\)
Vậy \(\left(n^2-1\right)⋮8\left(đpcm\right)\)
Đề bài của bạn sai nhé , phải là \(\left(n^2-1\right)⋮8\)
Giải như sau : Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N^{\text{*}}\right)\)
\(\Rightarrow n^2-1=\left(2k+1\right)^2-1=2k\left(2k+2\right)=4k\left(k+1\right)\)
Vì k(k+1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2 => 4k(k+1) chia hết cho 4.2 = 8 hay \(n^2-1\) luôn chia hết cho 8 vói mọi n lẻ
a/ \(n=2m+1\)
\(\Rightarrow\left[\left(2m+1\right)^2+8\left(2m+1\right)+15\right]=4\left(m+2\right)\left(m+3\right)⋮8\)
b/ \(\frac{n^2+1}{n+1}=n-1+\frac{2}{n+1}\)
Để nó chia hết thi n + 1 là ước nguyên của 2
\(\Rightarrow\left(n+1\right)=\left(-2;-1;1;2\right)\)
\(\Rightarrow n=\left(-3,-2,0,1\right)\)
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
Gọi 5 số đó là a; a+1; a+2 ;a+3; a+4;a+5;a+6
Ta có
a+6-a=5 chia hết cho 5
Câu b
Ta có
13.12 + 26.17=13.12+2.13.17=13(12+2.17)=13.46 luôn chia hết cho 13.23
nhớ tick mình nha