K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2023

\(x^2+2mx-2m+3>=0\)(1)

\(\text{Δ}=\left(2m\right)^2-4\cdot1\cdot\left(-2m+3\right)\)

\(=4m^2+8m-12\)

\(=4\left(m^2+2m-3\right)=4\left(m+3\right)\left(m-1\right)\)

Để bất phương trình (1) đúng với mọi x thuộc R thì \(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4\left(m+3\right)\left(m-1\right)< =0\\1>0\end{matrix}\right.\)

=>\(\left(m+3\right)\left(m-1\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m+3>0\\m-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-3\\m< 1\end{matrix}\right.\)

=>-3<m<1

TH2: \(\left\{{}\begin{matrix}m+3< 0\\m-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)

=>\(m\in\varnothing\)

12 tháng 4 2021

- Trước tiên ta tìm điều kiện của mm để phương trình đã cho có hai nghiệm phân biệt: x1,x2(Δ′>0)x1,x2(Δ′>0).

- Ta biến đổi biểu thức 2(x12+x22)−5x1x22(x12+x22)−5x1x2 về biểu thức có chứa x1+x2x1+x2 và x1x2x1x2 rồi từ đó ta tìm được giá trị của mm.

- Đối chiếu với điều kiện xác định của mm để tìm được giá trị thỏa mãn yêu cầu của bài toán.

12 tháng 4 2021

Mình đọc rối quá bạn. Chép ra vẫn không hiểu. 

31 tháng 12 2017

Phương trình x 2 – 2mx + 2m − 1 = 0 có a = 1  0 và  = 4 m 2 – 4 (2m – 1)

= 4 m 2 – 8 m + 4 = 4 ( m – 1 ) 2   ≥ 0 ;   ∀ m

Phương trình có hai nghiệm x 1 ;   x 2 với mọi m

Theo hệ thức Vi-ét ta có  x 1 + x 2 = 2 m x 1 . x 2 = 2 m − 1

Xét 

  x 1 2 + x 2 2 = x 1 + x 2 2 - 2 x 1 x 2 ⇔ 4 m 2 – 2 ( 2 m – 1 ) = 10

⇔ 4 m 2 – 4 m + 2 – 10 = 0 ⇔ 4 m 2   – 4 m – 8 = 0 ⇔ m 2 – m – 2 = 0

  m 2 – 2 m + m – 2 = 0 ⇔ m ( m – 2 ) + ( m – 2 ) = 0 ⇔ ( m + 1 ) ( m – 2 ) = 0

⇔ m = 2 m = − 1

Vậy m = 2 và m = −1 là các giá trị cần tìm

Đáp án: D

26 tháng 1 2018

Chọn đáp án D

Δ=(2m)^2-4(m^2+2m+3)

=4m^2-4m^2-8m-12=-8m-12

Để PT có 2 nghiệm pb thì -8m-12>0

=>-8m>12

=>m<-3/2

x1^3+x2^3=108

=>(x1+x2)^3-3x1x2(x1+x2)=108

=>(-2m)^3-3(m^2+2m+3)*(-2m)=108

=>-8m^3+6m(m^2+2m+3)=108

=>-8m^3+6m^3+12m^2+18m-108=0

=>-2m^3+12m^2+18m-108=0

=>-2m^2(m-6)+18(m-6)=0

=>(m-6)(-2m^2+18)=0

=>m=-3

29 tháng 5 2023

Ptr có nghiệm `<=>\Delta' > 0`

   `<=>(-m)^2-2m+1 > 0`

  `<=>(m-1)^2 > 0<=>m-1 ne 0<=>m ne 1`

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m),(x_1.x_2=c/a=2m-1):}`

Ta có: `(x_1 ^2-2mx_1 +3)(x_2 ^2-2mx_2 -2)=50`

`<=>[x_1 ^2-(x_1+x_2)x_1+3][x_2 ^2-(x_1+x_2)x_2 -2]=50`

`<=>(-x_1.x_2+3)(-x_1.x_2-2)=50`

`<=>(1-2m+3)(1-2m-2)=50`

`<=>(4-2m)(-1-2m)=50`

`<=>-4-8m+2m+4m^2=50`

`<=>4m^2-6m-54=0`

`<=>4m^2+12m-18m-54=0`

`<=>(m+3)(4m-18)=0<=>[(m=-3),(m=9/2):}`  (t/m)

3 tháng 3 2016

bài này sử dụng định lí vi-ét nha

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?

PT cuối cũng bị lỗi.

Bạn xem lại đề!

1 tháng 4 2021

Em sửa rồi ấy ạ

2 tháng 5 2023

Phương trình đã cho có nghiệm phân biệt khi : 

\(\Delta'=m^2-\left(m^2+2m+3\right)=-2m-3>0\)

\(\Leftrightarrow m< -\dfrac{3}{2}\)(*)

Hệ thức Viette : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=m^2+2m+3\end{matrix}\right.\)

Có \(x_1^3+x_2^3=108\)

\(\Leftrightarrow\left(x_1+x_2\right).\left(x_1^2-x_1x_2+x_2^2\right)=108\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=108\)

\(\Leftrightarrow-8m^3+6m\left(m^2+2m+3\right)=108\)

\(\Leftrightarrow m^3-6m^2-9m+54=0\)

\(\Leftrightarrow\left(m-6\right).\left(m-3\right).\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=6\\m=\pm3\end{matrix}\right.\)

Kết hợp (*) được m = -3 thỏa mãn

30 tháng 4 2022

Bạn ơi, bạn xem lại đề có được không ạ? Là \(\left(x_1^2-2mx_1+3\right)\left(x_2^2-2mx_2-2\right)=50\) hay sao ạ?

30 tháng 4 2022

Hay là \(\left(x_1^2-2mx_2+3\right)\left(x_2^2-2mx_1-2\right)=50\) bạn nhỉ?