giúp mình câu c, d với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,N=\left(2x-1\right)^2-4\ge-4\\ N_{min}=-4\Leftrightarrow x=\dfrac{1}{2}\\ c,P=\left(2x-5\right)^2+6\left(2x-5\right)+9-4\\ P=\left(2x-5+3\right)^2-4=\left(2x-2\right)^2-4\ge-4\\ P_{min}=-4\Leftrightarrow x=1\\ d,Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\\ Q=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\\ Q_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
6a.
$M=x^2-x+1=(x^2-x+\frac{1}{4})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$
Vậy $M_{\min}=\frac{3}{4}$ khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$
a) \(A=\dfrac{\sqrt[]{x}+2}{\sqrt[]{x}-5}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt[]{x}-5\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt[]{x}\ne5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)
Khi \(x=16\Rightarrow A=\dfrac{\sqrt[]{16}+2}{\sqrt[]{16}-5}=\dfrac{4+2}{4-5}=-6\)
b) \(B=\dfrac{3}{\sqrt[]{x}+5}+\dfrac{20-2\sqrt[]{x}}{x-25}\)
B có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x-25\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)
\(\Leftrightarrow B=\dfrac{3\left(\sqrt[]{x}-5\right)+20-2\sqrt[]{x}}{\left(\sqrt[]{x}+5\right)\left(\sqrt[]{x}-5\right)}\)
\(\Leftrightarrow B=\dfrac{3\sqrt[]{x}-15+20-2\sqrt[]{x}}{\left(\sqrt[]{x}+5\right)\left(\sqrt[]{x}-5\right)}\)
\(\Leftrightarrow B=\dfrac{\sqrt[]{x}+5}{\left(\sqrt[]{x}+5\right)\left(\sqrt[]{x}-5\right)}\)
\(\Leftrightarrow B=\dfrac{1}{\sqrt[]{x}-5}\left(dpcm\right)\)
c) \(A=\dfrac{\sqrt[]{x}+2}{\sqrt[]{x}-5}\in Z\left(x\in Z\right)\)
\(\Leftrightarrow\sqrt[]{x}+2⋮\sqrt[]{x}-5\)
\(\Leftrightarrow\sqrt[]{x}+2-\left(\sqrt[]{x}-5\right)⋮\sqrt[]{x}-5\)
\(\Leftrightarrow\sqrt[]{x}+2-\sqrt[]{x}+5⋮\sqrt[]{x}-5\)
\(\Leftrightarrow7⋮\sqrt[]{x}-5\)
\(\Leftrightarrow\sqrt[]{x}-5\in U\left(7\right)=\left\{-1;1;-7;7\right\}\)
\(\Leftrightarrow x\in\left\{16;36;144\right\}\)
d) \(A>B\left(2\sqrt[]{x}+5\right)\)
\(\Leftrightarrow\dfrac{\sqrt[]{x}+2}{\sqrt[]{x}-5}>\dfrac{1}{\sqrt[]{x}-5}\left(2\sqrt[]{x}+5\right)\)
\(\Leftrightarrow\sqrt[]{x}+2>2\sqrt[]{x}+5\)
\(\Leftrightarrow\sqrt[]{x}< -3\)
mà \(\sqrt[]{x}\ge0\)
\(\Leftrightarrow x\in\varnothing\)
c) Do AMBF là hình bình hành (cmt)
⇒ BM // AF
Mà AF ⊥ AB
⇒ BM ⊥ AB
⇒ ∠ABM = 90⁰
Do AHCN là hình chữ nhật (cmt)
⇒ ∆AHC vuông tại H
F là trung điểm của AC (gt)
⇒ HF = AF = CF = AC : 2
⇒ ∆AHF cân tại F
⇒ ∠AHF = ∠FAH
Mà ∠FAH + ∠HAB = 90⁰
⇒ ∠AHF + ∠HAB = 90⁰
Lại có:
∆AHB vuông tại H
⇒ ∠HAB + ∠HBA = 90⁰
Mà ∠HAB + ∠AHF = 90⁰ (cmt)
⇒ ∠AHF = ∠HBA (1)
Do ∠FHB = ∠AHF + ∠AHB
= ∠AHF + 90⁰ (2)
∠MBH = ∠HBA + ∠ABM
= HBA + 90⁰ (3)
Từ (1), (2), (3) ⇒ ∠FHB = ∠MBH
∆ABC có:
E là trung điểm của AB (gt)
F là trung điểm của AC (gt)
⇒ EF // BC
⇒ FM // BH
Tứ giác BMFH có:
FM // BH (cmt)
⇒ BMFH là hình thang
Mà ∠FHB = ∠MBH (cmt)
⇒ BMFH là hình thang cân
d)
Do AMBF là hình bình hành (cmt)
⇒ AF = BM và AF // BM
Do F là trung điểm của AC (gt)
⇒ AF = CF = AC : 2
⇒ AC = 2AF
Mà AF = BM (cmt)
⇒ CF = BM
Do AF // BM (cmt)
⇒ CF // BM
Tứ giác BCFM có:
CF // BM (cmt)
CF = BM (cmt)
⇒ BCFM là hình bình hành
Mà K là giao điểm của BF và CM (gt)
⇒ K là trung điểm của BF
∆FBM có:
K là trung điểm của BF (cmt)
E là trung điểm của FM (gt)
⇒ EK là đường trung bình của BM
⇒ EK = BM : 2
⇒ BM = 2EK
Do AHCN là hình chữ nhật (cmt)
⇒ AC = HN
Lại có AC = 2AF (cmt)
⇒ HN = 2AF
Mà AF = BM
⇒ HN = 2BM
Mà BM = 2EK
⇒ HN = 2.2EK = 4EK
Vậy HN = 4EK
c.
\(n_A=\dfrac{5,6}{22,4}=0,25\left(mol\right)\)
\(\Rightarrow m_A=0,25.32=8\left(g\right)\)
\(n_{CO_2}=\dfrac{28}{22,4}=1,25\left(mol\right)\)
\(\Rightarrow m_{CO_2}=1,25.44=55\left(g\right)\)
d.
\(V_{O_2}=0,25.22,4=5,6\left(l\right)\)
\(V_{CO_2}=0,1.22,4=2,24\left(l\right)\)
bn sửa hộ mik \(n_A\Rightarrow n_{O_2}\), \(m_A\Rightarrow m_{O_2}\) nhé, vừa nãy mik nhìn nhầm
a: Xét ΔHAB có
I là trung điểm của HA
M là trung điểm của HB
Do đó: IM là đường trung bình của ΔHAB
Suy ra: IM//AB
hay ABMI là hình thang
`@` `\text {Ans}`
`\downarrow`
`c)`
\(2-3^{x-1}-7=11\)
`\Rightarrow`\(3^{x-1}-5=11\)
`\Rightarrow`\(3^{x-1}=11+5\)
`\Rightarrow`\(3^{x-1}=16\)
Bạn xem lại đề
`d)`
\(\left(x-\dfrac{3}{5}\right)\div\dfrac{-1}{3}=-0,4\)
`\Rightarrow`\(x-\dfrac{3}{5}=-0,4\cdot\left(-\dfrac{1}{3}\right)\)
`\Rightarrow`\(x-\dfrac{3}{5}=\dfrac{2}{15}\)
`\Rightarrow`\(x=\dfrac{2}{15}+\dfrac{3}{5}\)
`\Rightarrow`\(x=\dfrac{11}{15}\)
Vậy, \(x=\dfrac{11}{15}\)
Bạn nên viết lại đề cho rõ ràng để nhận được sự trợ giúp tốt hơn nhé.