Cho hình thang ABCD. Lấy M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA.
a) Chứng minh MN // AC
b) Tứ giác MNPQ là hình gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a: Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy a MQ//NP và MQ=NP
=>MNPQ là hình bình hành
b: Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2 và MN//AC
Để MNPQ là hình chữ nhật thì MN vuông góc với MQ
=>AC vuông góc với BD
a: Xét tứ giác ABPD có
AB//PD
AB=PD
Do đó: ABPD là hình bình hành
Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
a) \(\Delta ABC\)có :
MA = MB ( gt )
NB = NC ( gt )
=> MN là đường trung bình của \(\Delta ABC\)
=> \(MN//AC\)\(;\)\(MN=\frac{1}{2}AC\)
CMTT : \(PQ//AC\)\(;\)\(PQ=\frac{1}{2}AC\)
=> MN // PQ ; MN = PQ .
=> Tứ giác MNPQ là hình bình hành .
b) Theo câu a) , Ta có :
MQ // BD và \(MQ=\frac{1}{2}BD\) ; NP // BD và \(NP=\frac{1}{2}BD\)
+) Hình bình hành MNPQ là hình thoi
=> MN = MQ <=> AC = BD ( Vì \(MN=\frac{1}{2}AC\)\(MQ=\frac{1}{2}BD\))
=> ABCD là hình thang cân .
+) Hình bình hành MNPQ là hình chữ nhật
\(\Rightarrow\) \(\widehat{NMQ}=90^0\)\(\Leftrightarrow\)\(MN\perp MQ\)\(\Leftrightarrow\)\(AC\perp BD\)( Vì MN // AC ; MQ // BD )
=> Hình thang thang ABCD có 2 đường chéo vuông góc với nhau .
+) Hình bình hành MNPQ là hình vuông
\(\Rightarrow\)\(MN=MQ\)\(;\)\(\widehat{NMQ}=90^0\) \(\Leftrightarrow\)\(AC=BC\)và \(AC\perp BD\)
=> ABCD là hình thang cân có 2 đường chéo vuông góc với nhau .
Sửa đề: M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA
a: AB//DC
\(P\in DC\)
Do đó: AB//DP
AB=DC/2
DP=DC/2=PC
Do đó: AB=DP=CP
Xét tứ giác ABPD có
AB//PD
AB=PD
Do đó: ABPD là hình bình hành
b: Xét ΔABC có
M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình của ΔBAC
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q,P lần lượt là trung điểm của DA,DC
=>QP là đường trung bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
Do đó: MNPQ là hình bình hành
c: ABPD là hình bình hành
=>AP cắt BD tại trung điểm của mỗi đường
=>E là trung điểm của AP và BD
Xét ΔADP có
Q,E lần lượt là trung điểm của AD,AP
=>QE là đường trung bình
=>QE//DP
=>QE//DC
Xét ΔBDC có
E,N lần lượt là trung điểm của BD,BC
=>EN là đường trung bình
=>EN//DC
EN//DC
QE//DC
mà QE và EN có điểm chung là E
nên Q,E,N thẳng hàng
a: Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2
Từ (1) và (2) suy ra MNPQ là hình bình hành
b: \(C_{MNPQ}=MN+PQ+MQ+PN\)
\(=\dfrac{AC}{2}+\dfrac{AC}{2}+\dfrac{BD}{2}+\dfrac{BD}{2}\)
=AC+BD
a: Xét ΔBAC có
M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình của ΔABC
=>MN//AC và MN=AC/2
b: Xét ΔCDA có
P,Q lần lượt là trung điểm của CD,DA
=>PQ là đường trung bình của ΔCDA
=>PQ//AC và \(PQ=\dfrac{AC}{2}\)
MN//AC
PQ//AC
Do đó: MN//PQ
\(MN=\dfrac{AC}{2}\)
\(PQ=\dfrac{AC}{2}\)
Do đó: MN=PQ
Xét tứ giác MNPQ có
MN=PQ
MN//PQ
Do đó: MNPQ là hình bình hành