Giải phương trình
\(\frac{\sqrt{3x}-3}{3+\sqrt{3x}}=\frac{-1}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{3}{2}\sqrt{3x}-\sqrt{3x}-5=\frac{1}{2}\sqrt{3x}\)
\(\Rightarrow\frac{3}{2}\sqrt{3x}-\sqrt{3x}-5-\frac{1}{2}\sqrt{3x}=0\)
\(\Rightarrow\frac{3}{2}\sqrt{3x}-\sqrt{3x}-\frac{1}{2}\sqrt{3x}=5\)
\(\Rightarrow\sqrt{3x}\left(\frac{3}{2}-1-\frac{1}{2}\right)=5\)
\(\Rightarrow\sqrt{3x}.0=5\)
Vậy bất phương trình
\(\frac{3}{2}\sqrt{3x}-\sqrt{3x}-\frac{1}{2}\sqrt{3x}=5\)
\(0\sqrt{3x}=5\)(vô lý)
vậy pt vô nghiệm
Đặt \(\hept{\begin{cases}a=\sqrt{4x+1}\\b=\sqrt{3x-2}\end{cases}\ge}0\) thì có:
\(\Rightarrow a^2-b^2=x+3\)\(\Rightarrow a-b=\frac{a^2-b^2}{5}\)
\(\Rightarrow a-b-\frac{\left(a-b\right)\left(a+b\right)}{5}=0\)
\(\Rightarrow\left(a-b\right)\left(1-\frac{a+b}{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a=b\\a+b=5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\sqrt{4x+1}=\sqrt{3x-2}\\\sqrt{4x+1}+\sqrt{3x-2}=5\end{cases}}\)\(\Rightarrow x=2\)
ĐKXĐ: z>0
pt<=> \(\frac{x^3+3x^2\sqrt[3]{3x-2}-12x+\sqrt{x}-\sqrt{x}-8}{x}=0\)
<=> \(x^3+3x^2\sqrt[3]{3x+2}-12x-8=0\)
<=> \(3x^2\sqrt[3]{3x-2}-6x^2+x^3-6x^2+12x-8=0\)
<=> \(3x^2\left(\sqrt[3]{3x-2}-2\right)+\left(x-2\right)^3=0\)
<=> \(3x^2\cdot\frac{3x-2-8}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^3=0\)
<=> \(\left(x-2\right)\left(\frac{9x^2}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^2\right)=0\)
<=> \(x=2\)( vì cái trong ngoặc thứ 2 luôn dương vs mọi x>0)
vậy x=2
Chứng minh : A = 5 + 5 mũ 2 + 5 mũ 3 + . . . + 5 mũ 9+ 5 mũ 10 chia hết cho 6 giúp mk với nha
\(DK:x\ge\frac{2}{3}\)
\(\Leftrightarrow5\left(\sqrt{4x+1}-3\right)-5\left(\sqrt{3x-2}-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\frac{20\left(x-2\right)}{\sqrt{4x+1}+3}-\frac{15\left(x-2\right)}{\sqrt{3x-2}+2}-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{20}{\sqrt{4x+1}+3}-\frac{15}{\sqrt{3x-2}+2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\\frac{20}{\sqrt{4x+1}+3}-\frac{15}{\sqrt{3x-2}+2}-1=0\end{cases}}\)
Vi \(\frac{20}{\sqrt{4x+1}+3}-\frac{15}{\sqrt{3x-2}+2}-1< 0\left(\forall x\ge\frac{2}{3}\right)\)
Vay nghiem cua PT la \(x=2\)
và tìm điều kiện
đk \(x\ge0\)
\(\frac{\sqrt{3x}-3}{3+\sqrt{3x}}=-\frac{1}{5}\)
\(\Leftrightarrow\frac{\left(\sqrt{3x}-3\right)^2}{\left(\sqrt{3x}-3\right)\left(3+\sqrt{3x}\right)}=-\frac{1}{5}\)
\(\Leftrightarrow\frac{3x-6\sqrt{3x}+9}{3x-9}=-\frac{1}{5}\)
\(\Leftrightarrow\frac{\left(x-2\sqrt{3x}+3\right)}{x-3}=-\frac{1}{5}\)
\(\Leftrightarrow5\left(x-2\sqrt{3x}+3\right)=3-x\)
\(\Leftrightarrow5x-10\sqrt{3x}+15=3-x\)
\(\Leftrightarrow6x-2.5\sqrt{3x}+12=0\)