Viết phương trình đường thẳng :
a) Đi qua 2 điểm A(0;-3) và B(1;-1)
b) Đi qua 2 điểm A(1;5) và B(-1;4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết phương trình đường thẳng :
a) Đi qua 2 điểm A(0;-3) và B(1;-1)
b) Đi qua 2 điểm A(1;5) và B(-1;4)
a) \({d_1}\) song song với đường thẳng \({d_2}:x + 3y + 2 = 0\) nên nhận vectơ pháp tuyến của đường thẳng \({d_2}\) làm vectơ pháp tuyến là \(\overrightarrow n = \left( {1;3} \right)\)
\({d_1}\) đi qua điểm \(A(2;3)\) nên ta có phương trình tổng quát
\(\left( {x - 2} \right) + 3.\left( {y - 3} \right) = 0 \Leftrightarrow x + 3y - 11 = 0\)
b) \({d_1}\) vuông góc với đường thẳng \({d_3}:3x - y + 1 = 0\) nên nhận vectơ pháp tuyến của đường thẳng \({d_3}\) làm vectơ chỉ phương là \(\overrightarrow u = \left( {3; - 1} \right)\)
\({d_1}\) đi qua điểm \(B(4; - 1)\) nên ta có phương trình tham số: \(\left\{ \begin{array}{l}x = 4 + 3t\\y = - 1 - t\end{array} \right.\)
a: (Δ)//d nên Δ: -x+2y+c=0
=>VTPT là (-1;2)
=>VTCP là (2;1)
PTTS là:
x=3+2t và y=1+t
b: (d): -x+2y+1=0
=>Δ: 2x+y+c=0
Thay x=4 và y=-2 vào Δ, ta được:
c+8-2=0
=>c=-6
a) Khoảng cách từ điểm A đến đường thẳng \(\Delta \) là: \(d\left( {A,\Delta } \right) = \frac{{\left| {0 - 2 - 4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 3\sqrt 2 \).
b) Ta có: \(\overrightarrow {{n_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\). Phương trình đường thẳng a là:
\(1\left( {x + 1} \right) + 1\left( {y - 0} \right) = 0 \Leftrightarrow x + y + 1 = 0\)
c) Ta có: \(\overrightarrow {{u_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\).Từ đó suy ra \(\overrightarrow {{n_b}} = \left( {1; - 1} \right)\). Phương trình đường thẳng b là:
\(1\left( {x - 0} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow x - y + 3 = 0\)
\(a,\) Gọi đt cần tìm là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a+b=-5\\a=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow y=-2x+3\)
\(b,\) Gọi đt cần tìm là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}8a+b=-1\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=1\end{matrix}\right.\Leftrightarrow y=-\dfrac{1}{4}x+1\)
\(c,\) Gọi đt đi qua M và N là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2a+b=-3\\-6a+b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-2\end{matrix}\right.\Leftrightarrow y=\dfrac{1}{2}x-2\)
Thay \(x=1;y=1\Leftrightarrow1=\dfrac{1}{2}\cdot1-2\Leftrightarrow1=-\dfrac{1}{2}\left(\text{vô lí}\right)\)
\(\Leftrightarrow P\notinđths\)
Vậy 3 điểm này ko thẳng hàng
Phương trình đường thẳng có dạng \(\left(d\right):y=ax+b\)
a) \(A\left(0;-3\right)\cap B\left(1;-1\right)\in\left(d\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}a.0+b=-3\\a.1+b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-3\\a=2\end{matrix}\right.\)
Vậy \(\left(d\right):y=2x-3\)
b) \(A\left(1;5\right)\cap B\left(-1;4\right)\in\left(d\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}a.1+b=5\\a.\left(-1\right)+b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\-a+b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2b=9\\a+b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{9}{2}\\a=5-\dfrac{9}{2}=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(\left(d\right):y=\dfrac{1}{2}x+\dfrac{9}{2}\)
Gọi (d): y = ax + b là phương trình đường thẳng cần viết
a) Do (d) đi qua A(0; -3)
⇒ b = -3
⇒ (d): y = ax - 3
Do (d) đi qua (1; -1)
⇒ a.1 - 3 = -1
⇔ a = -1 + 3
⇔ a = 2
⇒ (d): y = 2x - 3
b) Do (d) di qua A(1; 5)
⇒ a.1 + b = 5
⇔ a + b = 5
⇔ a = 5 - b (1)
Do (d) đi qua B(-1; 4)
⇒ a.(-1) + b = 4
⇔ b - a = 4 (2)
Thay (1) vào (2) ta có:
b - (5 - b) = 4
⇔ b - 5 + b = 4
⇔ 2b = 4 + 5
⇔ 2b = 9
⇔ b = 9/2
Thay b = 9/2 vào (1) ta có:
a = 5 - 9/2
⇔ a = 1/2
Vậy (d): y = x/2 + 9/2