cho hthang abcd ab//cd co e thuoc bc sao cho de la tia pgiac goc d va goc aed=90 do. goi k la giao diem cua 2 duong thang ae và cd
a. cm tam giac adk can
b. biet ad=10cm, ae=6cm tinh s_abcd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Xét 2 \(\Delta\) \(ABM\) và \(CNM\) có:
\(AM=CM\) (vì M là trung điểm của \(AC\))
\(\widehat{AMB}=\widehat{CMN}\) (vì 2 góc đối đỉnh)
\(BM=NM\) (vì M là trung điểm của \(BN\))
=> \(\Delta ABM=\Delta CNM\left(c-g-c\right).\)
=> \(AB=CN\) (2 cạnh tương ứng)
=> \(\widehat{BAM}=\widehat{NCM}\) (2 góc tương ứng)
Ta có: \(\widehat{BAM}+\widehat{NCM}=180^0\) (vì 2 góc kề bù)
Mà \(\widehat{BAM}=90^0\left(gt\right)\)
=> \(90^0+\widehat{NCM}=180^0\)
=> \(\widehat{NCM}=180^0-90^0\)
=> \(\widehat{NCM}=90^0.\)
=> \(\widehat{BAM}=\widehat{NCM}=90^0\)
=> \(CN\perp AB.\)
b) Xét 2 \(\Delta\) \(AMN\) và \(CMB\) có:
\(AM=CM\) (như ở trên)
\(\widehat{AMN}=\widehat{CMB}\) (vì 2 góc đối đỉnh)
\(MN=MB\) (như ở trên)
=> \(\Delta AMN=\Delta CMB\left(c-g-c\right)\)
=> \(AN=BC\) (2 cạnh tương ứng)
=> \(\widehat{ANM}=\widehat{CBM}\) (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AN\) // \(BC.\)
Chúc bạn học tốt!
Bài này cô mk dạy phải chứng minh thẳng hàng, không đc ra ngay nếu không sẽ mất điểm đó bạn.
Bài 2:
a) Xét hai tam giác ABD và EBD có:
AB = EB (gt)
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
BD: cạnh chung
Vậy: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)
Suy ra: \(\widehat{BAD}=\widehat{BED}\) (hai góc tương ứng)
Mà \(\widehat{BAD}=90^o\)
Do đó \(\widehat{BED}=90^o\) hay DE \(\perp\) BE.
b) Vì AB = EB (gt)
\(\Rightarrow\) \(\Delta ABE\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thởi là đường trung trực
Do đó: BD là đường trung trực của AE. (1)
c) Xét hai tam giác vuông ADH và EDC có:
DA = DE (\(\Delta ABD=\Delta EBD\))
\(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)
Vậy: \(\Delta ADH=\Delta EDC\left(cgv-gn\right)\)
Suy ra: AH = EC (hai cạnh tương ứng)
Ta có: BH = AB + AH
BC = EB + EC
Mà AB = EB (gt)
AH = EC (cmt)
\(\Rightarrow\) BH = BC
\(\Rightarrow\) \(\Delta BHC\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thời là đường cao của HC hay
BD \(\perp\) HC (2)
Từ (1) và (2) suy ra: AE // HC (đpcm).
Nghỉ thôi, học hành j tầm này.
a) - Xét 2 \(\Delta DAE\) và \(\Delta DKE\) có ,
+ \(\widehat{ADE}=\widehat{KDE}\) ( GT , DE là tia phân giác góc ADC )
+ DE là cạnh chung
+ \(\widehat{DEA}=\widehat{DEK}=90^o\) (GT , \(\widehat{AED}=90^o\); A , E, K thẳng hàng )
=> \(\Delta DAE=\Delta DEK\left(g.c.g\right)\)
=> DA = DK ( 2 cạnh tương ứng bằng nhau )
=> \(\Delta DAK\) cân tại D
b) -Xét \(\Delta EAB\) và \(\Delta EKC\) có :
+ \(\widehat{AEB}=\widehat{KEC}\)( 2 góc đối đỉnh )
+ EA = EK ( theo ý a )
+ \(\widehat{EAB}=\widehat{EKC}\) ( 2 góc ở vị trí so le trong )
=> \(\Delta EAB=\Delta EKC\left(g.c.g\right)\)
- Mặt khác , ta có : \(S_{ABCD}=S_{EAB}+S_{DAE}+S_{DCE}=S_{DAE}+S_{DCE}+S_{EKC}=S_{DAK}\)
Mà \(\Delta DEA\)vuông tại E , nên theo định lí Py-Ta-go , ta có
\(AD^2=AE^2+DE^2\) \(\Rightarrow DE^2=DA^2-AE^2=10^2-6^2=100-36=64\) \(\Rightarrow DE=\sqrt{64}=8\left(cm\right)\)
+ AK = AE + EK = 2AE = 2.6 =12 (cm)
=> \(S_{ABCD}=S_{DAK}=\frac{12.8}{2}=48\left(cm^2\right)\)