K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

Cách giải 1 (Toán kết hợp với máy tính) Vì 504 = 7 x 8 x 9 nên để 11a8b1987c chia hết cho 8 thì ba số tận cùng 87c phải chia hết cho 8. Vì 87c = 800 + 7c nên để 87c chia hết cho 8 thì c chỉ có thể bằng 2. Số cần tìm có dạng 11a8b19872.
Để số đã cho chia hết cho 9 thì: 37+a+b = 36 +1 + a + b phải chia hết cho 9, tức là a + b + 1=9 hoặc a + b + 1 = 18. Suy ra : a + b = 8 hoặc a + b = 17.
Thử tất cả các trường hợp trên máy tính ta có các kết quả sau :
[​IMG]

Cách giải 2 (Suy luận toán học) Ta có:
[​IMG]

Như vậy, để số đã cho chia hết cho 7 thì 3a-2b+1 phải chia hết cho 7. Vì 3a-2b+1<=3a+1<=28 nên 3a-2b+1 chỉ có thể bằng một trong các số: 0, 7, 14, 21, 28. 
Vì số đã cho đồng thời phải chia hết cho 9 nên a và b đồng thời phải thỏa mãn hai điều kiện: a + b = 17 hoặc a + b = 8 và 3a -2b +1 bằng một trong các số: 0, 7, 14, 21, 28. 
Trường hợp 1 3a -2b +1 Từ điều kiện a+b=8 ta được a=3,b=5
Trường hợp 2 Hệ 3a -2b +1 =7 và a+b=8 không có nghiệm nguyên.
Trường hợp 3 Hệ 3a -2b +1 = 14 và a+b=8 không có nghiệm nguyên.
Trường hợp 4 Hệ 3a -2b +1=21 và a+b=8 không có nghiệm nguyên.
Trường hợp 5 Hệ 3a -2b +1=28 và a+b=8 không có nghiệm nguyên.
Trường hợp 6 Hệ 3a -2b +1=0 và a+b=17 không có nghiệm nguyên.
Trường hợp 7 Hệ 3a -2b +1=7 và a+b=17 có nghiệm a=8, b=9.
Trường hợp 8 Hệ 3a -2b +1=14 và a+b=17 không có nghiệm nguyên.
Trường hợp 9 Hệ 3a -2b +1=21 và a+b=17 không có nghiệm nguyên.
Trường hợp 10 Hệ 3a -2b +1=28 và a+b=17 không có nghiệm nguyên.
Đáp số: Số cần tìm là 1138519872 và 1188919872 .

4 tháng 7 2017

Tìm a,b,c biết số 11a8b1987c chia hết cho 504.
Cách giải 1 (Toán kết hợp với máy tính) Vì 504 = 7 x 8 x 9 nên để 11a8b1987c chia hết cho 8 thì ba số tận cùng 87c phải chia hết cho 8. Vì 87c = 800 + 7c nên để 87c chia hết cho 8 thì c chỉ có thể bằng 2. Số cần tìm có dạng 11a8b19872.
Để số đã cho chia hết cho 9 thì: 37+a+b = 36 +1 + a + b phải chia hết cho 9, tức là a + b + 1=9 hoặc a + b + 1 = 18. Suy ra : a + b = 8 hoặc a + b = 17.
Thử tất cả các trường hợp trên máy tính ta có các kết quả sau :
[​IMG]

Cách giải 2 (Suy luận toán học) Ta có:
[​IMG]

Như vậy, để số đã cho chia hết cho 7 thì 3a-2b+1 phải chia hết cho 7. Vì 3a-2b+1<=3a+1<=28 nên 3a-2b+1 chỉ có thể bằng một trong các số: 0, 7, 14, 21, 28. 
Vì số đã cho đồng thời phải chia hết cho 9 nên a và b đồng thời phải thỏa mãn hai điều kiện: a + b = 17 hoặc a + b = 8 và 3a -2b +1 bằng một trong các số: 0, 7, 14, 21, 28. 
Trường hợp 1 3a -2b +1 Từ điều kiện a+b=8 ta được a=3,b=5
Trường hợp 2 Hệ 3a -2b +1 =7 và a+b=8 không có nghiệm nguyên.
Trường hợp 3 Hệ 3a -2b +1 = 14 và a+b=8 không có nghiệm nguyên.
Trường hợp 4 Hệ 3a -2b +1=21 và a+b=8 không có nghiệm nguyên.
Trường hợp 5 Hệ 3a -2b +1=28 và a+b=8 không có nghiệm nguyên.
Trường hợp 6 Hệ 3a -2b +1=0 và a+b=17 không có nghiệm nguyên.
Trường hợp 7 Hệ 3a -2b +1=7 và a+b=17 có nghiệm a=8, b=9.
Trường hợp 8 Hệ 3a -2b +1=14 và a+b=17 không có nghiệm nguyên.
Trường hợp 9 Hệ 3a -2b +1=21 và a+b=17 không có nghiệm nguyên.
Trường hợp 10 Hệ 3a -2b +1=28 và a+b=17 không có nghiệm nguyên.
Đáp số: Số cần tìm là 1138519872 và 1188919872 .

11 tháng 11 2016

em gửi bài qua fb thầy chữa cho nhé, tìm fb của thầy bằng sđt: 0975705122 nhé.

6 tháng 8 2015

A/632

B/610

C/384

29 tháng 10 2016

1138519872:504=2258968

loading...

2:

a: \(126⋮x;144⋮x\)

=>x thuộc ƯC(126;144)

mà x lớn nhất

nên x=UCLN(126;144)=18

b: 121 chia x dư 1

=>121-1 chia hết cho x

=>120 chia hết cho x(1)

183 chia x dư 3

=>183-3 chia hết cho 3

=>180 chia hết cho x(2)

Từ (1), (2) suy ra \(x\inƯC\left(120;180\right)\)

mà x lớn nhất

nên x=ƯCLN(120;180)=60

c: 240 và 384 đều chia hết cho x

=>\(x\inƯC\left(240;384\right)\)

=>\(x\inƯ\left(48\right)\)

mà x>6

nên \(x\in\left\{8;12;16;24;48\right\}\)

 

9 tháng 4 2017

x=3

y=2

z=8

4 tháng 7 2017

x = 3

y = 2

z = 8

24 tháng 10 2015

a. theo đề => x=ƯCLN(60, 504, 120)=12

b. => x \(\in\)ƯC(144,132)={1; 2; 3; 4; 6; 12}

Mà x > 20

=> x=\(\phi\)

24 tháng 10 2015

bạn vào câu hỏi tương tự mà làm