Cho số abc chia hết cho 27
Chứng minh rằng số bca chia hết cho 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:abc chia hết cho 27
=>abc chia hết cho 3 và 9
=>(a+b+c) chia hết cho 3 và 9
=>(b+c+a) chia hết cho 3 và 9
=>bca chia hết cho 3 và 9
=>bca chia hết cho 27
bca = 100b + 10c + a (1)
abc chia hết 27 <=> 100a + 10b + c chia hết 27 <=> 19a + 10b + c chia hết 27
=> c = 27k - 19a - 10b
Thay vào (1) => bca = 100b + 10(27k - 19a - 10b) + a = 270k - 189a = 27(10k - 7a) chia hết 27
Giả sử abc chia hết cho 27 thì trước hết abc phải chia hết cho 9 => a+b+c chia hết cho 9
=> bca cũng chia hết cho 9 => bca = 9m (m € N)
ta có: abc = 27k với (k € N)
abc - bca = 27k - 9m
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m)
<=> 99a - 90b - 9c = 9(3k - m)
<=> 11a - 10b - c + m = 3k
<=> 21a - 10(a+b+c) + 9c + m = 3k
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3
=> m cũng chia hết cho 3
=> m = 3n (n € N)
=> bca = 9m = 27n => bca chia hết cho 27 (đpcm)
abc \(⋮\)27
\(\Rightarrow\)abc0 \(⋮\)27
\(\Rightarrow\)1000a + bc0 \(⋮\)27
\(\Rightarrow\)27 . 37a + bca \(⋮\)27
Do 27 . 37a \(⋮\)27 nên bca \(⋮\)27
Ta có abc chia hết cho 27
=> 10(100a + 10b + c) chia hết cho 27
=> 1000a + 100b + 10c chia hết cho 27
=> 999a + (100b + 10c + a) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca chia hết cho 27
Dãy số abc chia hết cho 27 :
108; 135; 162; ...; 999
Từ dãy số trên ta lập dãy số bca :
081; 351; 621; ...; 999
Nhận thấy các số trong dãy số bca luôn chia hết cho 27 và số sau bằng số liền trước công với 270.
Kết luận : abc chia hết cho 27 thì bca cũng chia hết cho 27
a, Ta có:
\(\overline{ab}+\overline{ba}=10a+b+10b+a=11\left(a+b\right)\)
=> ab + ba chia hết cho 11(đpcm)
b, Ta có:
\(\overline{ab}-\overline{ba}=10a+b-10b-a=9\left(a-b\right)\)
=> ab - ba chia hết cho 9 (a > b)(đpcm)
Chúc bạn học tốt!!!
abc : 27 tức là chia hết cho 3 va 9
vì số nào có tổng chia hết cho 3 và 9 thì chia hết cho 3 và 9 mà bca là đạo ngược các chữ số của abc nên tổng các cs của bca ko thay đổi.
=> bca chia hết cho 27
mk làm linh tinh thôi chứ ko chắc đâu
abc : 27 tức là chia hết cho 3 va 9
vì số nào có tổng chia hết cho 3 và 9 thì chia hết cho 3 và 9 mà bca là đạo ngược các chữ số của abc nên tổng các cs của bca ko thay đổi.
=> bca chia hết cho 27
mk làm linh tinh thôi chứ ko chắc đâu