\(A=4+4^2+...+4^{99}.4^{100}\)
Chứng minh \(A⋮5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=4+4^2+...+4^99+4^100
=(4+4^2)+...+(4^99+4^100)
=4(1+4)+...+4^99(1+4)
=(1+4)(4+...+4^99)
=5(4+...+4^99) chia hết cho 5
a, ta xét:
\(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
.....
\(\frac{99}{100}< \frac{100}{101}\)
=>\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)
hay:A<B(đpcm)
b,\(A.B=\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.....\frac{100}{101}\)
\(=\frac{1.2.3....100}{2.3.4....101}=\frac{1}{101}\)
c,vì A<B (theo phần a)
=>A.A<B.A
Mà B.A=\(\frac{1}{101}\)
=>A2<101
Mà A2=\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)
=>\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)<\(\frac{1}{101}\)<\(\frac{1}{100}=\frac{1}{10^2}\)
=>\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)<\(\frac{1}{10^2}\)
=>\(\frac{1}{2}.\frac{3}{4}....\frac{99}{100}< \frac{1}{10}\)
Hay A<\(\frac{1}{10}\)
\(A=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)
\(\Leftrightarrow A< B\)
a. tính A = 3+3^2+3^3+3^4+.....+3^100
3A=3^2+3^3+3^4+3^5+....+3^100
3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100
mà B=3^100-1 => A<B
Ta có:
A=(41+42)+(43+44)+...+(499+4100)
A=4.(1+4)+43.(1+4)+...+499.(1+4)
A=4.5+43.5+...+499.5
A=5.(4+43+...+499)
=>A chia hết cho 5
bài này tớ đã biết nhưng chỉ thử các bạn thôi... cám ơn nhiều nha
Bài làm:
Ta có: \(A=1+4+4^2+4^3+...+4^{99}\)
\(\Rightarrow4A=4+4^2+4^3+4^4+...+4^{100}\)
\(\Rightarrow4A-A=\left(4+4^2+...+4^{100}\right)-\left(1+4+...+4^{99}\right)\)
\(\Leftrightarrow3A=4^{100}-1\)
\(\Rightarrow A=\frac{4^{100}-1}{3}=\frac{4^{100}}{3}-\frac{1}{3}< \frac{4^{100}}{3}=\frac{B}{3}\)
\(\Leftrightarrow A< \frac{B}{3}\)
A = 1 + 4 + 42 + 43 + ... + 499
4A = 4( 1 + 4 + 42 + 43 + ... + 499 )
= 4 + 42 + 43 + 44 + ... + 4100
4A - A = 3A
= ( 4 + 42 + 43 + 44 + ... + 4100 ) - ( 1 + 4 + 42 + 43 + ... + 499 )
= 4 + 42 + 43 + 44 + ... + 4100 - 1 - 4 - 42 - 43 - ... - 499
= 4100 - 1
3A = 4100 - 1 => A = \(\frac{4^{100}-1}{3}\)
\(\frac{B}{3}=\frac{4^{100}}{3}\)
\(4^{100}-1< 4^{100}\Rightarrow\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\)
\(\Rightarrow A< \frac{B}{3}\left(đpcm\right)\)
Lời giải:
$A=1+4+4^2+4^3+...+4^{99}$
$4A=4+4^2+4^3+4^4+....+4^{100}$
$\Rightarrow 4A-A=4^{100}-1$
$\Rightarrow 3A=4^{100}-1=B-1< B$
$\Rightarrow A< \frac{B}{3}$
a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)
4A=4+4^2+4^3+4^4+....+4^100
4A-A=4^100-1
=>3A=4^100-1 mà 4^100-1<4^100
=>3A<B =>A<B/3(đpcm)
Ta có: A = 1+4+4^2+4^3+...+4^99
=> 4A = 4.(1+4+4^2+4^3+...+4^99)
=> 4A = 4+4^2+4^3+...+4^99+4^100
=> 4A - A = (4+4^2+4^3+...+4^99+4^100) - (1+4+4^2+4^3+...+4^99)
=> 3A = 4^100 - 1
=> A = 4^100-1/3 < 4^100/3 mà B = 4^100
=> A < 4^100/3
Bài toán đã được chứng minh.
A=4(1+4)+....+4^99(1+4)
=5*(4+.....+4^99)\(⋮5\)
Nếu 4 mũ số lẻ thì tận cùng sẽ là 4 và số chẵn tận cùng sẽ là 6
=> 4+6+4+6+...+6 ( chỉ lấy số tận cùng nhé)
=>số tận cùng của dãy là 0
=> 0 x 4^100 = 0 x 6 = 0
vậy dãy số đó tận cùng là 0 nên chia hết 5