Giúp mình giải bài tập này với các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`10)`
Xếp `6` học sinh vào `7` chỗ là `2` lần hoán vị của `6`
`=>` Có `2.6!=1440` cách.
`11)` Chọn `3` học sinh trong `8` học sinh là chỉnh hợp chập `3` của `8`
`=>` Có `A_8 ^3=336` cách.
Xếp 6 học sinh vào 7 chỗ là 2 lần hoán vị của 6
⇒ Có 2.6≠1440 cách.
11) Chọn 33 học sinh trong 88 học sinh là chỉnh hợp chập 33 của 88
⇒ Có \(a\dfrac{3}{8}\)=336 cách.
`\Omega=C_38 ^3`
Gọi `A:`"Chọn `3` học sinh là nam."
`=>A=C_18 ^3`
`=>P(A)=[C_18 ^3]/[C_38 ^3]=68/703`
\(\Omega=c\dfrac{3}{28}\)
gọi a là chọn 3 học sinh là nam
a=\(c\dfrac{3}{18}\)
p(a)=\(\dfrac{c\dfrac{3}{18}}{c\dfrac{3}{38}}\)=\(\dfrac{68}{703}\)
4:
\(n\left(\Omega\right)=C^3_{35}\)
\(n\left(A\right)=C^3_{15}\)
=>\(P\left(A\right)=\dfrac{13}{187}\)
\(\left\{{}\begin{matrix}x=1+t\\y=2+2t\end{matrix}\right.\)
--->vtcp là \(\overrightarrow{u}\)=(1;2)
\(n\left(\Omega\right)=2^3=8\)
Gọi A : '' Nhận 2 mặt sấp ''
\(A=\left\{SNS;SSN;NSS;SSS\right\}\Rightarrow n\left(A\right)=4\)
Xác suất biến cố \(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{4}{8}=\dfrac{1}{2}\)
a:
Ta có: \(SA\subset\left(SAB\right)\)
\(SA\subset\left(SAD\right)\)
Do đó: \(\left(SAB\right)\cap\left(SAD\right)=SA\)
b: Gọi O là giao điểm của AC và BD trong mp(ABCD)
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)
c: Xét (SAD) và (SBC) có
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
AD//BC
Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC