K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

Xét ΔODC có AB//DC

nên \(\dfrac{AB}{DC}=\dfrac{OA}{OD}=\dfrac{OB}{OC}\) và \(\dfrac{AO}{AD}=\dfrac{BO}{BC}\)(1)

Xét ΔAOM và ΔADC có

\(\widehat{AOM}=\widehat{ADC}\)

\(\widehat{OAM}=\widehat{DAC}\)

Do đó: ΔAOM~ΔADC

=>\(\dfrac{OM}{DC}=\dfrac{AO}{AD}\)(2)

Xét ΔBON và ΔBCD có

\(\widehat{BON}=\widehat{BCD}\)

\(\widehat{OBN}=\widehat{CBD}\)

Do đó: ΔBON~ΔBCD

=>\(\dfrac{BO}{BC}=\dfrac{ON}{CD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{OM}{CD}=\dfrac{ON}{CD}\)

=>OM=ON

NM
11 tháng 1 2021

A B C D O M N

ta có 

AB//CD do đó \(\frac{OA}{OD}=\frac{OB}{OC}\Rightarrow\frac{DA}{DO}=\frac{CB}{CO}\)

mà ta có \(\frac{AB}{MO}=\frac{CB}{CO}=\frac{DA}{DO}=\frac{AB}{NO}\Rightarrow MO=NO\)

vậy ta có đpcm

Xét ΔBON và ΔBCD có

góc BON=góc BCD

góc OBN=góc CBD

=>ΔBON đồng dạng với ΔBCD

=>ON/CD=BO/BC

Xét ΔAMO và ΔACD có

góc AMO=góc ACD

góc MAO=góc CAD

=>ΔAMO đồng dạng với ΔACD

=>MO/CD=AO/AD

=>MO/CD=ON/DC

=>MO=ON

Bài 2: 

Xét ΔADC có OM//DC

nen OM/DC=AM/AD(1)

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC(2)

Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)

Từ (1) (2)và (3) suy ra OM=ON

Bài 2: 

Xét ΔADC có OM//DC

nen OM/DC=AM/AD(1)

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC(2)

Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)

Từ (1) (2)và (3) suy ra OM=ON

31 tháng 12 2023

Xét ΔADC có OM//DC

nên \(\dfrac{OM}{DC}=\dfrac{AM}{AD}\left(1\right)\)

Xét ΔBDC có ON//DC

nên \(\dfrac{ON}{DC}=\dfrac{BN}{BC}\left(2\right)\)

Xét hình thang ABCD có MN//AB//CD

nên \(\dfrac{AM}{MD}=\dfrac{BN}{NC}\)

=>\(\dfrac{MD}{MA}=\dfrac{CN}{BN}\)

=>\(\dfrac{MD+MA}{MA}=\dfrac{CN+BN}{BN}\)

=>\(\dfrac{AD}{AM}=\dfrac{BC}{BN}\)

=>\(\dfrac{AM}{AD}=\dfrac{BN}{BC}\left(3\right)\)

Từ (1),(2),(3) suy ra OM=ON

25 tháng 4 2018

a) ABCD là hình thang nên AB//CD

CD=2AB ==>AB/CD=1/2

AB//CD, áp dụng định lý Ta-let, ta có

OA/OC=OB/OD=AB/CD=1/2

=>OA/OC=1/2 => OC=2OA

B) Ta có : OA/OC=OB/OD=AB/CD=1/2

==> OD/OB = 2 ==>OD = 2OB

*xét: OC/AC = 2OA/(OA + OC) = 2OA/(OA + 2OA) = 2OA/3OA = 2/3(1);

OD/BD = 2OB/(OD + OB) = 2OB/(2OB + OB) = 2/3(2)
*từ (1),(2) =>OC/AC = OD/BD = 2/3
=>O là trọng tâm tam giác FCD

c)

Vì một đường thẳng song song với AB và CD lần lượt cắt các đoạn thẳng AD, BD,AC và BC tại M, I,K và N nên KN//AB ,IM//AB và IN//AB

MI//AB, áp dụng hệ quả của định lý Ta-let, ta có

MI/AB = DM/AD = DI/IB (1)

IN//AB, áp dụng định lý Ta-let, ta có

CN/BC=DI/IB (2)

Từ (1) và (2), ta có

DM/AD=CN/BC

d)

KN//AB, áp dụng hệ quả của định lý Ta-let, ta có

KN/AB=CN/BC

Ta có :KN/AB=CN/BC và MI/AB=DM/AD

mà DM/AD=CN/BC nên KN/AB=MI/AB => KN=MI

27 tháng 1 2016

http://olm.vn/hoi-dap/question/403903.html

27 tháng 1 2016

http://olm.vn/hoi-dap/tag/Toan-lop-8.html