Các Bạn và Thầy Cô giúp em với ak.Em cám ơn nhiều ak
Chứng minh rằng trong một hình thang nếu tổng hai cạnh bên bằng đáy lớn thì
phân giác của hai góc ở đáy nhỏ cùng đi qua một điểm thuộc đáy lớn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy điểm M thuộc đáy lớn sao cho: AD=DM
Theo bài ra AD+BC=DC
=> BC=MC
Do đó: tam giác ADM cân tại D => \(\widehat{A}_1=\widehat{M_1}\)
Mặt khác \(\widehat{A_2}=\widehat{M_1}\)( sole trong)
=> \(\widehat{A_2}=\widehat{A_1}\)=> AM là phân giác góc A
Tam giác BCM cân tại C => \(\widehat{B}_1=\widehat{M_2}\)
Mặt khác \(\widehat{B_2}=\widehat{M_2}\)( sole trong)
=> \(\widehat{B_2}=\widehat{B_1}\)=> BM là phân giác góc A
Mà M thuộc đáy lớn DC
Vậy hai đường phân giác của hai góc ở đáy nhỏ cùng đi qua một điểm thuộc đáy lớn.
Ta có AB // CD => Góc IDC=Góc DIA ﴾ so le trong ﴿
Mà góc IDC=góc IDA ﴾ do ID là tia phân giác góc ADC﴿
=> Góc DIA= Góc IDA => tam giác DIA cân tại A
=> AD = AI ﴾1﴿
Ta có AB // CD => Góc DCI = Góc CIB ﴾so le trong ﴿
Mà góc DCI = góc ICB ﴾ do IC là tia phân giác góc DCB﴿
=> Góc CIB = Góc ICB => tam giác CIB cân tại B
=> BC = BI ﴾2﴿
Cộng ﴾1﴿ và ﴾2﴿ , vế theo vế .Ta được:
AD + BC = AI + BI
=> AD + BC = AB ﴾đpcm﴿
B/ Trong hình thang ABCD (AB//CD)
Kẻ BE//AD
Ta có:
BE=AD (hình thang có 2 cạnh bên song song)
Trong ΔBEC có:
BC+BC>EC
Hay AD +BC >CD-AB
a, Trong hình thang ABCD (AB // CD), kẻ BE // AD
Ta có: BE = AD, AB = DE (hình thang có 2 cạnh bên song song)
Xét t/g BEC có: BE + BC > EC (BĐT tam giác)
=> AD + BC > CD - DE hay AD + BC > CD - AB (đpcm)
b, Xét t/g BEC có: EC < |BC - BE|
=> CD - AB < |BC - AD| (đpcm)
c,Kẻ BF // AC
=> AB = CF ; AC = BF (hình thang có 2 cạnh bên song song)
Xét t/g BDF có: BD + BF > DF (BĐT tam giác)
=> BD + AC > DF
=> BD + AC > DC + CF
=> BD + AC > DC + AB (đpcm)
Hình thang ABCD (AB//CD, AB < CD)
Từ hai đỉnh A và B của đáy bé, hạ đường vuông góc AF và BE
Ta được hình vuông ABEF (tự chứng minh)
Ta có: AB // CD
⇒BADˆ+ADCˆ=1800 (Hai góc trong cùng phía) (*)
Lại có: BADˆ=BAFˆ+FADˆ
⇔BADˆ=900+FADˆ
⇔BADˆ>900
Từ (*) ⇒BADˆ>ADCˆ (1)
Chứng minh tương tự, ta được:
⇒ABCˆ>BCDˆ (2)
Cộng (1) với (2) theo vế, ta được:
⇒BADˆ+ABCˆ>ADCˆ+BCDˆ
a,Hình thang ABCD (AB//CD, AB < CD)
Từ hai đỉnh A và B của đáy bé, hạ đường vuông góc AF và BE
Ta được hình vuông ABEF (tự chứng minh)
Ta có: AB // CD
⇒BADˆ+ADCˆ=180 độ ⇒BAD^+ADC^=180 độ (Hai góc trong cùng phía) (*)
Lại có: BADˆ=BAFˆ+FADˆBAD^=BAF^+FAD^
⇔BADˆ=90độ +FADˆ⇔BAD^=90độ +FAD^
⇔BADˆ>90 độ ⇔BAD^>90 độ
Từ (*) ⇒BADˆ>ADCˆ⇒BAD^>ADC^ (1)
Chứng minh tương tự, ta được:
⇒ABCˆ>BCDˆ⇒ABC^>BCD^ (2)
Cộng (1) với (2) theo vế, ta được:
⇒BAD^+ABC^>ADCˆ+BCDˆ⇒BAD^+ABC^>ADC^+BCD^
⇒đpcm vậy ...
cái chóp này " ^ " là góc nhá bạn,mk chỉ làm đc câu a thui
Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath Em tham khảo link này nhé!