CMR : a5 - a chia het cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2 - a = a ( a - 1 )
mà a và a-1 là 2 số liên tiếp
=> 1 trong 2 số là số chẵn
=> a ( a - 1 ) chia hết cho 2 hay a2 - a chia hết cho 2
Ta có : \(a^2-a=a\left(a-1\right)\)
Vì \(a\left(a-1\right)\)là tích 2 số nguyên liên tiếp nên
\(a\left(a-1\right)⋮2\)
+ \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Vì \(a\left(a-1\right)\left(a+1\right)\)là tích 3 số nguyên liên tiếp nên :
\(a\left(a-1\right)\left(a+1\right)⋮3\)
+ \(a^5-a=a\left(a^4-1\right)\)
\(=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(+5\left(a-1\right)a\left(a+1\right)\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)là tích 5 số nguyên liên tiếp
\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)
\(\Rightarrow a^5-a⋮5\)
a) Trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 4 (1)
Trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 2 nhưng không chia hết cho 2 (2)
Trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 3 (3)
Vậy số đó chia hết cho 4 x 2 x 3 = 24
Hàm số f(x) đâu có y,z (y là tên hàm số rồi còn gì)??
ĐK: \(x\inℤ\)
TA có: \(y=f\left(x\right)=ax^2+bx+c⋮5\)
Vậy \(f\left(x\right)=ax^2+bx+c\) có dạng \(5k\) (k nguyên)
Nếu \(x⋮5\Rightarrow x\)có dạng \(5t\)
Thay vào,ta có: \(f\left(x\right)=25at^2+5bt+c=5t\left(5at+b\right)+c=5k\) (1)
Suy ra \(c=5k-5t\left(5at+b\right)=5\left[k-t\left(5at+b\right)\right]\) (2)
Thay (2) và (1) suy ra nếu x chia hết cho 5 thì f(x) chia hết cho 5 (thỏa mãn)
Nếu \(x⋮̸5\Rightarrow x\) có dạng 5t + 1
Thay vào và chứng minh tương tự để suy ra nếu x không chia hết cho 5 thì f(x) không chia hết cho 5 (trái với giả thiết)
Từ đó suy ra đpcm
Ta có :
\(a^5-a=a.\left(a^4-1\right)=a.\left(a^2+1\right)\left(a^2-1\right)=a.\left(a-1\right)\left(a+1\right).\left(a^2-4+5\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5.a\left(a-1\right)\left(a+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
Vì : + a ; a-1 ; a-2 ; a+1 ; a+2 là 5 số tự nhiên liên tiếp nên : a.(a-1)(a+1)(a-2)(a+2) chia hết cho 5 (1)
+ 5a(a-1)(a+1) cũng chia hết cho 5 (Vì có nhân tử 5 ) (2)
=>>>> a(a-1)(a+1)(a-2)(a+2) + 5a(a-1)(a+a) chia hết cho 5
Hay \(a^5-a\)Chia hết cho 5