Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.) Vì MQ//PI, theo hệ quả định lý ta lét ta có:
\(\dfrac{MQ}{PI}=\dfrac{QH}{IH}=\dfrac{MH}{PH}\)
=> \(\Delta MQH\) ~ \(\Delta PIH\) (c.c.c)
b. Chứng minh tuong tự ta có:
\(\Delta HMK\) ~ \(\Delta HPQ\) (c.c.c)
theo tỉ số \(\dfrac{MK}{PQ}=\dfrac{MK}{MN}=\dfrac{3}{5}\)
Vậy \(\dfrac{S_{HMK}}{S_{HPQ}}=\left(\dfrac{MK}{MN}\right)^2=\left(\dfrac{3}{5}\right)^2=\dfrac{9}{25}\)
c.) Vì MK//PQ => theo ta lét ta có: \(\dfrac{QH}{HK}=\dfrac{HP}{HM}\left(1\right)\)
Vì QM//PI => theo ta lét ta có: \(\dfrac{HP}{HM}=\dfrac{IH}{HQ}\left(2\right)\)
Từ (1) và (2) => \(\dfrac{QH}{HK}=\dfrac{HI}{HQ}=>HQ^2=HI.HK\)
Mình làm luôn câu b cho nhé:
Tg AKD đồng dạng với tg CKN (câu a)
=>\(\frac{AK}{CK}=\frac{KD}{KN}\)(đ/n) (1)
ABCD là hình bình hành => AB song song với CD.
=>Tg CDK đồng dạng với tg AMK ( hệ quả của đ/lí Talet)
=>\(\frac{CK}{AK}=\frac{DK}{MK}\)(đ/n) (2)
Từ (1),(2)=>\(\frac{KD}{KN}=\frac{KM}{KD}\left(=\frac{AK}{CK}\right)\)
=>KD\(^2\)=KM.KN
\(MK=\frac{MP}{2}\Rightarrow MK=PK\)
Hai tg MHK và tg PHK có chung đường cao từ H->MP và MK=PK nên \(S_{MHK}=S_{PHK}\)
Hai tg trên có chung cạnh HK nên đường cao từ M->HQ = đường cao từ P->HQ
Hai tg MHQ và tg PHQ có chung HQ và đường cao từ M->HQ = đường cao từ P->HQ \(\Rightarrow S_{MHQ}=S_{PHQ}\)
Ta có \(PQ=\frac{NP}{4}\Rightarrow\frac{PQ}{NQ}=\frac{1}{3}\)
Hai tg PHQ và tg NHQ có chung đường cao từ H->NP nên
\(\frac{S_{PHQ}}{S_{NHQ}}=\frac{PQ}{NQ}=\frac{1}{3}\) Mà \(S_{MHQ}=S_{PHQ}\Rightarrow\frac{S_{MHQ}}{S_{NHQ}}=\frac{1}{3}\)
Hai tg MHQ và tg NHQ có chung đường cao từ Q->HN nên
\(\frac{S_{MHQ}}{S_{MHQ}}=\frac{MH}{NH}=\frac{1}{3}\Rightarrow\frac{MH}{MN}=\frac{1}{2}\)
Hai tg MHK và tg MNK có chung đường cao từ K->HN nên
\(\frac{S_{MHK}}{S_{MNK}}=\frac{MH}{MN}=\frac{1}{2}\Rightarrow S_{MNK}=2xS_{MHK}\)
Hai tg MNK và MNP có chung đường cao từ N->MP nên
\(\frac{S_{MNK}}{S_{MNP}}=\frac{MK}{MP}=\frac{1}{2}\Rightarrow S_{MNP}=2xS_{MNK}=2.2.S_{MHK}=4x6=24cm^2\)
a: góc AKB=1/2*180=90 độ
góc AKE+góc AHE=180 độ
=>AKEH nội tiếp
b: XétΔCKM và ΔCNA có
góc CKM=góc CNA
góc C chung
=>ΔCKM đồng dạng với ΔCNA
=>CK/CN=CM/CA
=>CN*CM=CK*CA
XétΔCKE vuông tại K và ΔCHA vuông tại H có
góc HCA chung
=>ΔCKE đồng dạng với ΔCHA
=>CK/CH=CE/CA
=>CK*CA=CH*CE=CN*CM
a) Vì \(MNPQ\)là hình bình hành.
\(\Rightarrow MQ//NP\)(tính chất).
\(\Rightarrow MQ//PI\).
Xét \(\Delta HMQ\)và \(\Delta HPI\)có:
\(\widehat{MHQ}=\widehat{PHI}\)(vì đối đỉnh).
\(\widehat{QMH}=\widehat{IPH}\)(vì \(MQ//PI\)).
\(\Rightarrow\Delta HMQ~\Delta HPI\left(g.g\right)\)(điều phải chứng minh).