Tính tổng A=1+3+5+7+...+39+41. Chứng minh rằng, A⋮3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ) Tìm hai phân số có mẫu dương biết rằng trong hai mẫu có một mẫu gấp 5 lần mẫu kia và sau khi quy đồng mẫu hai phân số đó thì được 56/210 và -65/210
a) \(A=1+2+2^2+...+2^{41}\)
\(2A=2+2^2+...+2^{42}\)
\(2A-A=2+2^2+...+2^{42}-1-2-2^2-...-2^{41}\)
\(A=2^{42}-1\)
b) \(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{40}+2^{41}\right)\)
\(A=3+2^2\cdot3+...+2^{40}\cdot3\)
\(A=3\cdot\left(1+2^2+...+2^{40}\right)\)
Vậy A ⋮ 3
__________
\(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2+2^2\right)+...+\left(2^{39}+2^{40}+2^{41}\right)\)
\(A=7+...+2^{39}\cdot7\)
\(A=7\cdot\left(1+..+2^{39}\right)\)
Vậy: A ⋮ 7
c) \(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2^2\right)+\left(2+2^3\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)
\(A=5+2\cdot5+...+2^{38}\cdot5+2^{39}\cdot5\)
\(A=5\cdot\left(1+2+...+2^{39}\right)\)
A ⋮ 5 nên số dư của A chia cho 5 là 0
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
a) M = \(\frac{3}{8}+\frac{3}{15}+\frac{3}{7}\)
= 3 x( \(=\frac{1}{8}+\frac{1}{15}+\frac{1}{7}\) )
= 3 x \(\frac{105+56+120}{8x15x7}\)
= 3 x \(\frac{281}{3x5x8x7)\
= \(\frac{281}{280}\) > 1
Phần b tương tự nha !!
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
Mình giúp cho đáp án đúng 100%
5^2003+5^2002+5^2001 chia hết cho 31
=5^2001.(1+5+5^2)
=5^2001.31 chia hết cho 3
hai bài kia tương tự rất dễ đúng ko
Ta có: 52003 + 52002 + 52001
= 52001.(1 + 5 + 25)
= 52001 . 31 chia hết cho 31
Ta có: 1 + 7 + 72 + ...... + 7101
= (1 + 7) + (72 + 73) + ..... + (7100 + 7101)
= 1.8 + 72.(1 + 7) + ..... + 7100.(1 + 7)
= 1.8 + 72.8 + ..... + 7100 . 8
= 8.(1 + 72 + ..... + 7100) chia hết cho 8
a) A = 1 + 2 + 2² + ... + 2⁴¹
⇒ 2A = 2 + 2² + 2³ + ... + 2⁴²
⇒ A = 2A - A
= (2 + 2² + 2³ + ... + 2⁴²) - (1 + 2 + 2² + ... + 2⁴¹)
= 2⁴² - 1
b) A = 1 + 2 + 2² + ... + 2⁴¹
= (1 + 2 + 2²) + (2³ + 2⁴ + 2⁵) + ... + (2³⁹ + 2⁴⁰ + 2⁴¹)
= 7 + 2³.(1 + 2 + 2²) + ... + 2³⁹.(1 + 2 + 2²)
= 7 + 2³.7 + ... + 2³⁹.7
= 7.(1 + 2³ + ... + 2³⁹) ⋮ 7
Vậy A ⋮ 7
Ta có:
A = 1 + 2 + 2² + 2³ + ... + 2⁴⁰ + 2⁴¹
= (1 + 2) + (2² + 2³) + ... + (2⁴⁰ + 2⁴¹)
= 3 + 2².(1 + 2) + ... + 2⁴⁰.(1 + 2)
= 3 + 2².3 + ... + 2⁴⁰.3
= 3.(1 + 2² + ... + 2⁴⁰) ⋮ 3
Vậy A ⋮ 3
c) A = 1 + 2 + 2² + 2³ + ... + 2⁴⁰
= (1 + 2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶ + 2⁷) + ... + (2³⁸ + 2³⁹ + 2⁴⁰ + 2⁴¹)
= 15 + 2⁴.(1 + 2 + 2² + 2³) + ... + 2³⁸.(1 + 2 + 2² + 2³)
= 15 + 2⁴.15 + ... + 2³⁸.15
= 15.(1 + 2⁴ + ... + 2³⁸)
= 5.3.(1 + 2⁴ + ... + 2³⁸) ⋮ 5
Vậy A chia 5 dư 0
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$
`2A - A = - 1 + 2^42`$\\$
hay `A = -1 + 2^42`$\\$