CHO:
\(A=1.3.5.7.....48.49\)
\(B=\frac{1.2.3.4.....49.50}{2.4.6.....48.50}\)
\(C=\frac{26}{2}\).\(\frac{27}{2}\).......\(\frac{49}{2}\).\(\frac{50}{2}\)
SO SÁNH A, B VÀ C
giải ra giúp mk nhé!
ai nhanh mk tk~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(B=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+....+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{50}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{25}\right)\)
\(B=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)
\(\Rightarrow\)\(B=A\)
có vô số cặp
làm 1 vài phép biến đổi có thể suy ra 15a+10b=6a+6b
<=> 11a+4b=0 <=> a=\(\frac{-4b}{11}\) => -4b thuộc bội của (11)={0;±11;±22;±33,....}
hay b thuộc bội của (44)={0;±44;±88;±132;...}
Mỗi giá trị của b lại có 1 giá trị cua a mà B(44) có vô số số hạng nên có vô số cặp số (a;b) tự nhiên.
Vế trái:\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
=\(\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
=\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
=\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
=\(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)=Vế phải
ban len mang di , nam nay mk moi len lop 6
chuc ban hoc tot ^-^
hình như sai đề thì phải. Phần A đó, cuối cùng phải là 47.49 chứ