K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)

26 tháng 7 2021

Khi chia 1 số cho 3 thì số dư là 1 hoặc 2

Khi chia 3 số khác nhau cho 3 mà có 3 số dư khác nhau thì trong 3 số có 1 số chia hết cho 3

Giả sử Gọi 3 số cần tìm là A; B; C trong đó A chia hết cho 3, B chia 3 dư 1, C chia 3 dư 2 ta có

A+B+C=A+(B-1)+(C-2)+1+2=A+(B-1)+(C-2)+3 Ta có

\(A⋮3;\left(B-1\right)⋮3;\left(C-2\right)⋮3\Rightarrow A+\left(B-1\right)+\left(C-2\right)+3=\left(A+B+C\right)⋮3\)

27 tháng 7 2015

1. gọi 3 stn liên tiếp là n,n+1,n+2

ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3

2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3

ta có n+n+1+n+2+n+3 = 4n+6 

vì 4n ; hết cho 4 mà 6 : hết cho 4

=> 4n+6 ko : hết cho 4

3. gọi 2 stn liên tiếp đó là a,b

ta có a=5q + r

b=5q+r

a-b = ( 5q +r) - (5q1+r)

= 5q - 5q1

= 5(q-q1) : hết cho 5

1.Áp dụng định lý Fermat nhỏ.

27 tháng 8 2019

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

16 tháng 6 2016

1) Gọi 2 số lẻ là 2n + 1 và 2k + 3 (n và k là các số tự nhiên bất kì)

ta có tổng 2 số lẻ là:

2n + 1 + 2k + 3 = 2n + 2k + 4

= 2(n+k+2) chia hết cho 2 nên là số chẵn.

16 tháng 6 2016

2) Gọi 2 số chẵn là 2x và 2k ( x và k là số tự nhiên bất kì)

Tích của chúng là:

\(2x\times2k=4xk\) chia hết cho 4.

Tương tự với 3 số tự nhiên chẵn chia hết cho 8