K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2023

Ta có:

\(M=x^2-2x\left(y+1\right)+3y^2+2025\)

\(M=x^2-2\cdot x\cdot\left(y+1\right)+\left(y+1\right)^2+3y^2+2025-\left(y+1\right)^2\) 

\(M=\left[x-\left(y+1\right)\right]^2+3y^2+2025-y^2-2y-1\)

\(M=\left(x-y-1\right)^2+2y^2-2y+2024\)

\(M=\left(x-y-1\right)^2+2\left(y-\dfrac{1}{2}\right)^2+\dfrac{4047}{2}\)

Mà: \(\left\{{}\begin{matrix}\left(x-y-1\right)^2\ge0\\2\left(y-\dfrac{1}{2}\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow M=\left(x-y-1\right)^2+2\left(y-\dfrac{1}{2}\right)^2+\dfrac{4047}{2}\ge\dfrac{4047}{2}\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x-y-1=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}+1\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\) 

Vậy GTNN của M là .... 

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

27 tháng 7 2023

Ta có: 

\(2x+y=11z\) và \(3x-y=4z\)

Chia theo vế ta có:

\(\dfrac{2x+y}{3x-y}=\dfrac{11z}{4z}=\dfrac{11}{4}\)

\(\Leftrightarrow4\left(2x+y\right)=11\left(3x-y\right)\)

\(\Leftrightarrow8x+4y=33x-11y\)

\(\Leftrightarrow15y=25x\)

\(\Leftrightarrow3y=5x\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{5}=k\)

\(\Rightarrow x=3k,y=5k\)

 Thay vào Q ta có:

\(Q=\dfrac{2\cdot\left(3k\right)^2-3\cdot3k\cdot5k}{\left(3k\right)^2+3\cdot\left(5y\right)^2}\)

\(Q=\dfrac{18k^2-45k^2}{9k^2+75k^2}\)

\(Q=\dfrac{k^2\left(18-45\right)}{k^2\left(9+75\right)}\)

\(Q=\dfrac{-27}{84}=-\dfrac{9}{28}\)

\(\dfrac{2x+y}{3x-y}=\dfrac{11}{4}\)

=>33x-11y=8x+4y

=>25x=15y

=>5x=3y

=>x/3=y/5=k

=>x=3k; y=5k

\(Q=\dfrac{2\cdot9k^2-3\cdot3k\cdot5k}{9k^2+3\cdot25k^2}=\dfrac{18-9\cdot5}{9+3\cdot25}=\dfrac{-9}{28}\)

3x^2+3y^2+4xy-2x+2y+2=0

=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0

=>x=1 và y=-1

M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1

25 tháng 9 2023

loading...loading...

31 tháng 8 2018

bài 4 : ta có : \(x+2y=3\Leftrightarrow x=3-2y\)

\(\Rightarrow E=x^2+2y^2=\left(3-2y\right)^2+2y^2=4y^2-12y+9+2y^2\)

\(=6y^2-12y+6+3=6\left(y-1\right)^2+3\ge3\)

\(\Rightarrow E_{max}=3\) khi \(x=y=1\)

bài 5 : ta có : \(x^2+3y^2+2xy-10x-14y+18=0\)

\(\Leftrightarrow2y^2-4y+2=-\left(x^2+2xy+y^2\right)+10\left(x+y\right)-16\)

\(\Leftrightarrow2\left(y-1\right)^2=-\left(x+y\right)^2+10\left(x+y\right)-16\ge0\)

\(\Leftrightarrow2\le x+y\le8\)

\(\Rightarrow P_{min}=2\) khi \(\left\{{}\begin{matrix}y=1\\x+y=2\end{matrix}\right.\Leftrightarrow x=y=1\)

\(\Rightarrow P_{max}=8\) khi \(\left\{{}\begin{matrix}y=1\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

vậy ...........................................................................................................................

30 tháng 4 2022

hehe

30 tháng 4 2022

:)?

3 tháng 11 2018

Ta có

M   =   3 x 2 ( x 2   +   y 2 )   +   3 y 2 ( x 2   +   y 2 )   –   5 ( y 2   +   x 2 )     =   ( x 2   +   y 2 ) ( 3 x 2   +   3 y 2   –   5 )     =   ( x 2   +   y 2 ) [ 3 ( x 2   +   y 2 )   –   5 ]

Mà x 2   +   y 2   =   1 nên M = 1.(3.1 – 5) = -2. Vậy M = -2

Đáp án cần chọn là: D

11 tháng 11 2018


12 tháng 10 2023

loading...  loading...