Tính A=1+2+2^2+2+^3+...+2^2023
Giúp mình với.Cảm ơn các bạn rất nhiều.
💖💖🌹🌹
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết bài văn ngắn nêu suy nghĩ của em về câu thành ngữ: "Ăn vóc học hay"
Giup em vói ạ!!💖💖🌹🌹🌹🌹🌹💕💕💕💕💕💕
Một câu hỏi mà đến ngay cả các nhà văn hàng đầu, các nhà giáo nhân dân khả kính còn phải ướm lời, còn kg dám chắc hiểu hết ý của cổ nhân, mà đem ra làm bài tập cho học sinh lớp 5 thì có lẽ người ra đề muốn tìm "nhân tài không đợi tuổi" chăng. Các câu trả lời trong trang này cũng chỉ là trả lời quấn quít theo kiểu "trốn nhanh" chứ cũng kg dám đi sâu, mổ xẻ vào ý tứ của cổ nhân. Mọi người kg tin, có thể xin ý kiến của cụ Vũ Khiêu sẽ hiểu.
viết như thế có khinh thường giáo viên ko ạ!!
Giup em cách khác với ạ!! em cảm ơn nhìu lắm
A= 1/3 + 1/3^2 + ... + 1/3^8
3A= 3. (1/3+ 1/3^2+ ... + 1/3^8)
3A=1+ 1/3 + 1/3^2+ ... +1/3^7
=> 3A - A= (1 + 1/3 + 1/3^2 + ... + 1/3^7) - (1/3 + 1/3^2+ ... + 1/3^8)
=> 2A= 1 - 1/ 3^8
2A= 6560/6561
A= 6560/6561 : 2
A= 3280/6561
\(\dfrac{-1}{9}.\dfrac{-3}{5}+\dfrac{5}{-6}.\dfrac{-3}{5}-\dfrac{7}{2}.\dfrac{3}{5}\)
\(=\dfrac{3}{5}.\left(\dfrac{1}{9}+\dfrac{5}{6}-\dfrac{7}{2}\right)\)
\(=\dfrac{3}{5}.\left(\dfrac{2}{18}+\dfrac{15}{18}-\dfrac{63}{18}\right)\)
\(=\dfrac{3}{5}.\left(-\dfrac{23}{9}\right)\)
\(=-\dfrac{69}{45}\)
\(2^{x+3}.2=2^2.3+52\)
\(=>2^{x+3}.2=64\)
\(=>2^{x+3}=64:2\)
\(=>2^{x+3}=32\)
\(=>2^{x+3}=2^5\)
=>x+3=5
=>x=5-3
=>x=2
Vậy ...........
2x + 3 . 2 = 22 . 3 + 52
2x + 3 . 2 = 4 . 3 + 52
2x + 3 . 2 = 12 + 52
2x + 3 . 2 = 64
2x + 3 = 64 : 2
2x + 3 = 32
2x + 3 = 25
x + 3 = 5
x = 5 - 3
x = 2
Vậy x = 2
Lời giải:
Vì $a,b$ là số tự nhiên nên $2a+1,b-2$ là số nguyên
$(2a+1)(b-2)=12$ nên $2a+1$ là ước của $12$
Mà $2a+1$ là số tự nhiên lẻ nên $2a+1\in\left\{1;3\right\}$
Nếu $2a+1=1$ thì $b-2=12:1=12$
$\Rightarrow a=0; b=14$ (thỏa mãn)
Nếu $2a+1=3$ thì $b-2=12:3=4$
$\Rightarrow a=1; b=6$ (thỏa mãn)
A = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
⇒ 2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
⇒ A = 2A - A
= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³ + ... + 2²⁰²³)
= 2²⁰²⁴ - 1
\(A=1+2+2^2+...+2^{2023}\)
\(2\cdot A=2\cdot\left(1+2+2^2+...+2^{2023}\right)\)
\(2A=2+2^2+2^3+....+2^{2024}\)
\(2A-A=\left(2+2^2+...+2^{2024}\right)-\left(1+2+2^2+...+2^{2023}\right)\)
\(A=2+2^2+2^3+....+2^{2024}-1-2-2^2-...-2^{2023}\)
\(A=2^{2024}-1\)