K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

Bạn dưới làm đang đúng tới cuối sai mất.

T làm cách khác nhé.

\(x^2-2y^2=xy\)

\(\Leftrightarrow\frac{x^2}{y^2}-2=\frac{x}{y}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{x}{y}=-1\left(l\right)\\\frac{x}{y}=2\end{cases}}\)

Ta có:

\(A=\frac{x-y}{x+y}=\frac{\frac{x}{y}-1}{\frac{x}{y}+1}=\frac{2-1}{2+1}=\frac{1}{3}\)

2 tháng 8 2017

Ta có : x2 - 2y2 = xy

=> x2 - 2y2 - xy = 0

<=> x2 - 2xy + xy - 2y2 = 0

<=> x(x - 2y) + y(x - 2y) = 0

<=> (x + y)(x - 2y) = 0

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x-2y=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x=2y\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2y+y=0\\x=2y\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3y=0\\x=2y\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\\x=0\end{cases}}\)

13 tháng 7 2018

\(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)

Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)

\(\Rightarrow A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

7 tháng 12 2018

x2  - 2y2 = xy <=> x2 - xy - 2y2 = 0 <=> x2 + xy - 2xy - 2y2 = 0 <=> x (  x + y ) - 2y 

( x + y ) = 0 <=> ( x - 2y ) ( x + y ) = 0

mà x + y \(\ne\) 0 => x - 2y = 0 => x = 2y

=> A = \(\frac{2y-y}{2y+y}\) = \(\frac{y}{3y}\) = \(\frac{1}{3}\)

16 tháng 12 2020

Ta có: \(x^2-2y^2=xy\)

\(\Leftrightarrow x^2-xy-2y^2=0\)

\(\Leftrightarrow x^2-2xy+xy-2y^2=0\)

\(\Leftrightarrow x\left(x-2y\right)+y\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)

Vì \(x+y\ne0\) nên x-2y=0

hay x=2y

Thay x=2y vào biểu thức \(A=\dfrac{x-y}{x+y}\), ta được: 

\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

Vậy: \(A=\dfrac{1}{3}\)

5 tháng 1 2018

chs bb ak

Ta có: \(x^2-2y^2=xy\)

\(\Leftrightarrow x^2-y^2-y^2-xy=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

Mà \(x+y\ne0\)

\(\Rightarrow x-2y=0\)

\(\Rightarrow x=2y\)

\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

18 tháng 7 2018

Từ đề bài \(\Rightarrow\)\(x^2-2y^2-xy=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)

\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{1}{3}\)

18 tháng 7 2018

Vì \(x^2-2y^2=xy\) 

\(\Leftrightarrow x^2-xy-y^2=0\)

\(\Leftrightarrow\left(x-y\right)^2-y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

Theo đề bài thì có : 

\(x+y\ne0\)

\(\Rightarrow x-2y=0\)

\(\Leftrightarrow x=2y\)

Từ đó ta lại có :

\(P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

Vậy .......

2 tháng 1 2016

\(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\)

\(\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)

\(\Rightarrow x-y=y\)

\(x=2y\)

Thay \(x=2y\)

\(\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)

2 tháng 1 2016

3 đó các bạn

 

28 tháng 2 2020

Với đk trên ta có:

P = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\left(\frac{x}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}-\frac{y}{x+y}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\left(\frac{x-y}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\frac{x-y}{xy}.\left(xy-\left(x+y\right)^2\right).\frac{1}{x^2+xy+y^2}\)

\(=\frac{2}{x}+\frac{x-y}{xy}\)

\(=\frac{x+y}{xy}\)

11 tháng 2 2018

Ta có:    \(x^2-2y^2=xy\)

\(\Leftrightarrow\)\(x^2-2y^2-xy=0\)

\(\Leftrightarrow\)\(\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)

\(\Leftrightarrow\)\(\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)

\(\Leftrightarrow\)\(\left(x+y\right)\left(x-2y\right)=0\)

Vì    \(x+y\ne0\)nên   \(x-2y=0\)\(\Leftrightarrow\)\(x=2y\)

Vậy    \(A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)