Tính rồi so sánh kết quả.
$\frac{2}{7} \times 3$ và $\frac{2}{7} + \frac{2}{7} + \frac{2}{7}$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2}{7}:1=\frac{2x1}{7x1}=\frac{2}{7}\)
\(\frac{2}{7}:\frac{3}{4}=\frac{2}{7}x\frac{4}{3}=\frac{2x4}{7x3}=\frac{8}{21}\)
\(\frac{2}{7}:\frac{5}{4}=\frac{2}{7}x\frac{4}{5}=\frac{2x4}{7x5}=\frac{8}{35}\)
Hai câu còn lại mih k hiểu đề lắm nhé!!
cảm ơn bạn nhiều !!
mình không biết làm hai câu cuối thôi@
cảm ơn bạn lần nữa
a) Ta có: \( - 2 = \frac{{ - 2}}{1} = \frac{{ - 40}}{{20}}\)
\(\frac{{ - 11}}{5} = \frac{{ - 44}}{{20}} < \frac{{ - 40}}{{20}}\) nên \(\frac{{ - 11}}{5} < -2\).
\(\frac{{ - 7}}{4} = \frac{{ - 7.5}}{{4.5}} = \frac{{ - 35}}{{20}} > \frac{{ - 40}}{{20}}\) nên \(\frac{{ - 7}}{4} > -2\)
Vậy \(\frac{{ - 11}}{5} < \frac{{ - 7}}{4}\).
b) Ta có: \(\frac{{2020}}{{ - 2021}} = \frac{{ - 2020}}{{2021}} > \frac{{ - 2022}}{{2021}}\)
Vậy \(\frac{{2020}}{{ - 2021}} > \frac{{ - 2022}}{{2021}}\)
a) 3/7 : 1 = 3/7
3/7 : 2/5 = 15/14
3/7 : 5/4 = 12/35
b) Trường hợp 1: 1 = 1
Trường hợp 2: 2/5 < 1
Trường hợp 3: 5/4 > 1
c) Trường hợp 1: 2/7 = 2/7
Trường hợp 2: 15/14 > 3/7
Trường hợp 3: 3/7 > 12/35
Kết luận: - Nếu số chia bằng 1 thì thương bằng 1
-Nếu số chia bé hơn 1 thì thương lớn hơn 1
-Nếu số chia lớn hơn 1 thì thương bé hơn một.
A=\([\)\(\frac{2}{7}\)\(\times\)(\(\frac{1}{4}-\frac{1}{3}\))\(]\)\(\div\)\([\)(\(\frac{2}{7}\times\)(\(\frac{3}{9}-\frac{2}{5}\))\(]\)
=(\(\frac{2}{7}\times\)\(\frac{-1}{12}\))\(\div(\)\(\frac{2}{7}\times\)\(\frac{-1}{15}\))
=\(\frac{-1}{42}\)\(\div\)\(\frac{-2}{35}\)
=\(\frac{-1}{42}\)\(\times\)\(\frac{35}{-2}\)
=\(\frac{5}{12}\)
a) \(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\) \(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}=\frac{25}{33}\)
b) \(\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)....\left(1-\frac{10}{7}\right)=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right).\left(1-\frac{8}{7}\right).\left(1-\frac{9}{7}\right).\) \(\left(1-\frac{10}{7}\right)\) = 0
a)\(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)
\(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{7}{12}+\frac{10}{12}-\frac{12}{12}}{\frac{60}{12}-\frac{9}{12}+\frac{4}{12}}\)
\(=\frac{2}{3}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}\)
\(=\frac{25}{33}\)
b)\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot...\cdot\left(1-\frac{10}{7}\right)\)
Ta nhận thấy trong tích này có 1 thừa số là\(\left(1-\frac{7}{7}\right)=0\)nên tích trên sẽ bằng 0.
cách này mình tự nghĩ
\(\hept{\begin{cases}A=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\\B=\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\end{cases}}\)
\(\Rightarrow A-B=\left(\frac{4}{7}-\frac{4}{7}\right)+\left(\frac{5}{7^3}-\frac{5}{7^3}\right)+\left(5-5\right)+\left(\frac{3}{7^2}-\frac{6}{7^2}\right)+\left(\frac{6}{7^4}-\frac{5}{7^4}\right)\)
\(\Rightarrow A-B=-\frac{3}{7^2}+\frac{1}{7^4}\)
\(\Rightarrow A-B=\frac{-3\times7^2}{7^4}+\frac{1}{7^4}\)
mà \(-3\times7^2< 1\Rightarrow\frac{1}{7^4}>\frac{-3\times7^2}{7^4}\Rightarrow B>A\)
a) \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right) = \frac{9}{{12}} + \left( {\frac{6}{{12}} - \frac{4}{{12}}} \right) = \frac{9}{{12}} + \frac{2}{{12}} = \frac{{11}}{{12}}\)
\(\frac{3}{4} + \frac{1}{2} - \frac{1}{3} = \frac{9}{{12}} + \frac{6}{{12}} - \frac{4}{{12}} = \frac{{15}}{{12}} - \frac{4}{{12}} = \frac{{11}}{{12}}\)
Vậy \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right)\) = \(\frac{3}{4} + \frac{1}{2} - \frac{1}{3}\)
b)\(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right) = \frac{4}{6} - \left( {\frac{3}{6} + \frac{2}{6}} \right) = \frac{4}{6} - \frac{5}{6} = \frac{{ - 1}}{6}\)
\(\frac{2}{3} - \frac{1}{2} - \frac{1}{3} = \frac{4}{6} - \frac{3}{6} - \frac{2}{6} = \frac{1}{6} - \frac{2}{6} = \frac{{ - 1}}{6}\)
Vậy \(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right)\)=\(\frac{2}{3} - \frac{1}{2} - \frac{1}{3}\).
`#3107`
`a)`
`3/4 + (1/2 - 1/3)`
`= 3/4 + (3/6 - 2/6)`
`= 3/4 + 1/6`
`= 11/12`
`3/4 + 1/2 - 1/3`
`= 9/12 + 6/12 - 4/12`
`= (9 + 6 - 4)/12`
`= 11/12`
Vì `11/12 = 11/12`
`=> 3/4 + (1/2 - 1/3) = 3/4 + 1/2 - 1/3`
`b)`
`2/3 - (1/2 + 1/3)`
`= 2/3 - (3/6 + 2/6)`
`= 2/3 - 5/6`
`= -1/6`
`2/3 - 1/2 - 1/3`
`= 4/6 - 3/6 - 2/6`
`= (4 - 3 - 2)/6`
`= -1/6`
Vì `-1/6 = -1/6`
`=> 2/3 - (1/2 + 1/3) = 2/3 - 1/2 - 1/3`
a: \(log_2\left(mn\right)=log_2\left(2^7\cdot2^3\right)=7+3=10\)
\(log_2m+log_2n=log_22^7+log_22^3=7+3=10\)
=>\(log_2\left(mn\right)=log_2m+log_2n\)
b: \(log_2\left(\dfrac{m}{n}\right)=log_2\left(\dfrac{2^7}{2^3}\right)=7-3=4\)
\(log_2m-log_2n=log_22^7-log_22^3=7-3=4\)
=>\(log_2\left(\dfrac{m}{n}\right)=log_2m-log_2n\)
a) \(\log_2\left(mn\right)=\log_2\left(2^7.2^3\right)=\log_22^{7+3}=\log_22^{10}=10.\log_22=10.1=10\)
\(\log_2m+\log_2n=\log_22^7+\log_22^3=7\log_22+3\log_22=7.1+3.1=7+3=10\)
b) \(\log_2\left(\dfrac{m}{n}\right)=\log_2\dfrac{2^7}{2^3}=\log_22^4=4.\log_22=4.1=4\)
\(\log_2m-\log_2n=\log_22^7-\log_22^3=7.\log_22-3\log_22=7.1-3.1=4\)
$\frac{2}{7} \times 3 = \frac{2}{7} \times \frac{3}{1} = \frac{6}{7}$
$\frac{2}{7} + \frac{2}{7} + \frac{2}{7} = \frac{{2 + 2 + 2}}{7} = \frac{6}{7}$
Vậy $\frac{2}{7} \times 3$ = $\frac{2}{7} + \frac{2}{7} + \frac{2}{7}$