A=1+4+42+43+....+42021chia hết cho 21
help ><
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)
\(=21\left(1+...+4^{57}\right)⋮7\)
cứ tổng của 3 số liên tiếp được 1 số chia hết cho 7
=> (1+4+4^2)+(4^3+4^4+4^5)+.....+(4^57+4^58+4^59)(20 cặp số)
=> 21+ 4^3(1+4+4^2)+...+4^57(1+4+4^2)
......
Vì 21 chia hết cho 7=> 21.(........) chia hết cho 7=> A chia hết cho 7
đpcm
CM: A ⋮ 5
A = 1 + 4 + 42 + 43 + ... + 460
A = (1 + 4) + (42 + 43) + ... + (459 + 460)
A = 5 + 42 . (1 + 4) + ... + 459 . (1 + 4)
A = 5 + 42 . 5 + ... + 459 . 5
A = 5 . (1 + 42 + ... + 459) ⋮ 5
Vậy A ⋮ 5
CM: A ⋮ 21
A = 1 + 4 + 42 + 43 + ... + 460
A = (1 + 4 + 42) + (43 + 44 + 45) + ... + (458 + 459 + 460)
A = 21 + 43 . (1 + 4 + 42) + ... + 458 . (1 + 4 + 42)
A = 21 + 43 . 21 + ... + 458 . 21
A = 21 . (1 + 43 + ... + 458) ⋮ 21
Vậy A ⋮ 21
\(b,A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...\left(4^{57}+4^{58}+4^{59}\right)\\ A=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\\ A=\left(1+4+4^2\right)\left(1+4^3+...+4^{57}\right)\\ A=21\left(1+4^3+...+4^{57}\right)⋮7\)
a: \(\Leftrightarrow2x+1\in\left\{1;3\right\}\)
hay \(x\in\left\{0;1\right\}\)
\(A=4+4^2+4^3+...+4^{81}=4\left(1+4+4^2\right)+...+4^{79}\left(1+4+4^2\right)\)
\(=21\left(4+...+4^{79}\right)⋮21\)vậy ta có đpcm
A = 1 + 4 + 42 + 43 + ... + 42021
A = 40 + 41 + 42 + 43 +...+ 42021
Xét dãy số 0; 1; 2; 3;...; 2021
Dãy số trên có số số hạng là:
(2021 - 0) : 1 + 1 = 2022
Vậy A có 2022 số hạng
vì 2022 : 3 = 674
Vậy ta nhóm 3 số hạng liên tiếp của A thành một nhóm thì khi đó
A = (1 + 4 + 42) + (43 + 44 + 45) +...+ (42019 + 42020 + 42021)
A = (1 + 4 + 16) + 43.(1 + 4 + 42) + ... +42019.(1 + 4 + 42)
A = 21 + 43.21 +... + 42019.21
A = 21.(1 + 43 + ... + 42019)
21 ⋮ 21 ⇒ 21.(1 + 43 + ...+ 42019) ⋮ 21 ⇒ A ⋮ 21 (đpcm)
ta có
\(1+3+3^2+..+3^{2000}=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+..+\left(3^{1998}+3^{1999}+3^{2000}\right)\)
\(=13.1+13\cdot3^3+..+13\cdot3^{1998}\) chia hết cho 13
tương tự
\(1+4+4^2+..+4^{2012}=\left(1+4+4^2\right)+..+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21.1+21\cdot4^3+..+21.4^{2010}\) chia hết cho 21
\(A=1+4+4^2+4^3+4^4+4^5+...+4^{2019}+4^{2020}+4^{2021}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2019}+4^{2020}+4^{2021}\right)\)
\(=21+4^3\cdot21+...+4^{2019}\cdot21\)
\(=21\left(1+4^3+...+4^{2019}\right)⋮21\)
\(A=1+4+4^2+4^3+...+4^{2021}\\=(1+4+4^2)+(4^3+4^4+4^5)+(4^6+4^7+4^8)+...+(4^{2019}+4^{2020}+4^{2021})\\=21+4^3\cdot(1+4+4^2)+4^6\cdot(1+4+4^2)+...+4^{2019}\cdot(1+4+4^2)\\=21+4^3\cdot21+4^6\cdot21+...+4^{2019}\cdot21\\=21\cdot(1+4^3+4^6+...+4^{2019})\)
Vì \(21\cdot(1+4^3+4^6+...+4^{2019})\vdots21\)
nên \(A\vdots21\)
\(\text{#}Toru\)