K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

x - y = xy

\(\Rightarrow\)x = xy + y = y . ( x + 1 )

\(\Rightarrow\)x : y = x + 1 ( y \(\ne\)0 )

Theo bài ra : x : y = x - y

\(\Rightarrow\)x + 1 = x - y

\(\Rightarrow\)y = -1

Thay y = -1 vào x - y = xy , ta được :

x - ( -1 ) = x . ( -1 )

x + 1 = -x

2x = -1

x = \(\frac{-1}{2}\)

Vậy ...

1 tháng 8 2017

Ta có:

x - y = xy = x/y

Xét xy = x : y

=> y.y = x : x

=> y^2 = 1

=> y = 1

=> x - 1 = x (vô lí)

7 tháng 9 2016

Ta có : \(x-y=xy=x:y\)

x=0

y=0

4 tháng 7 2018

Từ \(xy=x:y\)=> \(xy=\frac{x}{y}\)=> \(xy^2=x\)

                                                => \(y^2=1\) => \(y=\pm1\)

Thay \(y=1\) vào    \(x-y=x.y\) ta có : \(x-1=x.1\)

                                                                        => \(x-1=x\)=> \(0x=1\)( vô lý) => loại

Thay \(y=-1\)  vào    \(x-y=x.y\)ta có: \(x-\left(-1\right)=x.\left(-1\right)\)

                                                                          => \(x+1=-x\)=> \(2x=-1\)

                                                                                                              => \(x=\frac{-1}{2}\)

\(v\text{ậy}\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)

4 tháng 1 2020

Mình giải như vầy:

\(x-2y=2\left(x+y\right)\Rightarrow x-2y=2x+2y\)

\(\Rightarrow x-2x=2y+2y\Rightarrow-x=4y\)

\(\Rightarrow\frac{x}{-4}=\frac{y}{1}=\frac{x-y}{-4-1}=\frac{\frac{x}{y}}{-5}=\frac{x}{-5y}\)

Lúc đó \(\frac{x}{-4}=\frac{x}{-5y}\)

Suy ra x = 0 hoặc \(-4=-5y\)

TH1: x = 0\(\Rightarrow x-y=\frac{x}{y}\Leftrightarrow0-y=0\Rightarrow y=0\)(loại vì y khác 0)

TH2: \(-4=-5y\Rightarrow y=\frac{4}{5}\)

Sau đó tính x = \(\frac{-16}{5}\)

4 tháng 1 2020

\(x-2y=2\left(x+y\right)\)\(\Leftrightarrow x=-4y\) (chuyển vế thôi!)

Mà \(x-y=\frac{x}{y}\Rightarrow\left(-4y\right)-y=-\frac{4y}{y}\)

\(\Rightarrow-5y=-4\Rightarrow y=\frac{4}{5}\Rightarrow x=-4y=-\frac{16}{5}\)

Vậy ...

24 tháng 11 2016

Bài này dễ mà bạn !!!

25 tháng 5 2017

\(xy=\frac{x}{y}\)

=> xy.y = x

=> y2 = 1

=> \(y=\orbr{\begin{cases}1\\-1\end{cases}}\)

thay từng giá trị y = 1 ; y = -1 vào đẳng thức :

x + y = \(\frac{x}{y}\)

Với y = 1

=> x không có giá trị 

Với y = -1 

=> x = \(-\frac{1}{2}\)

5 tháng 9 2017

x=0; y€N

4 tháng 7 2016

\(x+y=x.y=>x=x.y-y=y.\left(x-1\right)=>\frac{x}{y}=x-1\left(1\right)\)

Mà theo đề" \(x+y=\frac{x}{y}\left(2\right)\)

Từ (1) và (2) \(=>x-1=x+y=>y=-1\)

Thay y=-1 vào (1),ta có:

\(\frac{x}{-1}=x-\left(-1\right)=>-x=x+1=>-2x=1=>x=\frac{-1}{2}\)

Vậy x=-1/2;y=-1

4 tháng 7 2016

     Ta có :  x - y = xy   => x = xy + y = y ( x + 1 )

                             => x : y = x + 1 ( vì y khác 0 )

Ta có : x : y = x - y   => x + 1 = x - y  => y = -1

Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1)  => 2x = -1 => x = -1/2

Vậy x = -1/2   ;   y = -1

                                                 

x-2y= 2(x+y)

=> x-2y = 2x+2y

=> -2y-2y= 2x-x

=> x= -4y

Thay x= -4y vào x-y= x/y

=> -4y-y = -4y/ y

=.> -5y= -4

=> y =4/5

=> x= -16/5

bạn ơi mk làm nhanh chỗ tìm x nha

chỗ tìm x bạn làm vậy nè: x =-4y hay x= -4 . 4/5 = -16/5

12 tháng 8 2015

1

a/

[x+1].[x-2] < 0 => x+1 và x-2 trái dấu

mà x+1 > x-2 

=> x+1 > 0 ; x-2 < 0

=> -1 < x < 2 , x thuộc Q

b/

T.tự -2/3 < x < 2 , x thuộc Q

2.

x+y  = xy 

=> y  = xy -x = x.[y-1]

=> x : y = y-1 = x+y

            => x = -1 

thay vào x+y = xy

=> y-1 = -y => 2y = 1 => y= 1/2

Vậy x= -1 ; y = 1/2

5 tháng 12 2018

\(\left(xy+\frac{1}{xy}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)

\(=\left(xy+\frac{1}{xy}\right)\left[\left(xy+\frac{1}{xy}\right)-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\right]\)

\(=\left(xy+\frac{1}{xy}\right)\left(xy+\frac{1}{xy}-xy-\frac{x}{y}-\frac{y}{x}-\frac{1}{xy}\right)\)

\(=\left(xy+\frac{1}{xy}\right)\left(-\frac{x}{y}-\frac{y}{x}\right)\)

\(=-\left(xy+\frac{1}{xy}\right)\left(\frac{x}{y}+\frac{y}{x}\right)=-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)\)

\(-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(=4\)

Vậy giá trị bt ko phụ thuộc vào biến

5 tháng 12 2018

bn có thể giải thích rõ hơn tại sao lại bằng 4 được không? Dù gì thì cx cảm ơn bn đã tl câu hỏi của mk

12 tháng 7 2017

\(\left(x-y\right):\left(x+y\right):xy=1:7:24\)

\(\Rightarrow\frac{x-y}{1}=\frac{x+y}{7}=\frac{xy}{24}\) (1)

Áp dụng tính chất của dãy tỉ số bằng nhau đốt với hai tỉ số đầu ta có:

\(\frac{x-y}{1}=\frac{x+y}{7}=\frac{x-y+x+y}{1+7}=\frac{2x}{8}=\frac{x}{4}\)

Do đó \(\frac{x}{4}=\frac{xy}{24}\Rightarrow\frac{x}{xy}=\frac{4}{24}\Rightarrow\frac{1}{y}=\frac{1}{6}\Rightarrow y=6\)

Thay y = 6 vào (1) ta có:

\(\frac{x-6}{1}=\frac{x+6}{7}\)

=> 7(x - 6) = x + 6

=> 7x - 42 = x + 6

=> 7x - x = 6 + 42

=> 6x = 48

=> x = 8

Vậy x = 8, y = 6