Bài 1 Chứng minh
a) ( 121980- 2100) \(⋮\)10
b) (191981 + 111980) \(⋮\)10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=(2+2^2)+(2^3+2^4)+....+(2^{99}+2^{100})$
$=2(1+2)+2^3(1+2)+...+2^{99}(1+2)$
$=2.3+2^3.3+...+2^{99}.3$
$=3(2+2^3+...+2^{99})\vdots 3$
Ta có đpcm.
+, Nếu 100a+10b+c chia hết cho 21
=> 4.(100a+10b+c) chia hết cho 21
=> 400a+40b+4c chia hết cho 21
Mà 399a và 42b đều chia hết cho 21
=> 400a+40b+4c-399a-42b chia hết cho 21
=> a-2b+4c chia hết cho 21 (1)
+, Nếu a-2b+4c chia hết cho 21
Mà 399a và 42b đều chia hết cho 21
=> a-2b+4c+399a+42b chia hết cho 21
=> 400a+40b+4c chia hết cho 21
=> 4.(100a+10b+c) chia hết cho 21
=> 100a+10b+c chia hết cho 21 ( vì 4 và 21 là 2 số nguyên tố cùng nhau )
Tk mk nha
\(A+2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6+2^2.6+...+2^{98}.6=6\left(1+2^2+...+2^{98}\right)⋮6\)
\(A=2+2^2+2^3+2^4+...+2^{100}\)
\(=2\cdot3+...+2^{99}\cdot3\)
\(=6\left(1+...+2^{99}\right)⋮6\)
A = 1 + 21 + 22 + 23 + ...+ 2100 + 2101
A = 20 + 21 + 22 + 23 + ...+ 2100 + 2101
Xét dãy số:0; 1; 2; 3;...; 100; 101
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Số số hạng của dãy số trên là: (101 - 0) : 1 + 1 = 102 (số)
Vì 102 : 3 = 34
Vậy nhóm ba số hạng liên tiếp của A vào nhau ta được
A = (1 + 21 + 22) + (23 + 24 + 25) + ...+ (299 + 2100 + 2101)
A = (1 + 21 + 22) + 23.(1 + 21 + 22) + ...+ 299.(1 + 21 + 22)
A = (1 + 21 + 22).(1 + 23 + ...+ 299)
A = 7.(1 + 23 + ...+ 299) ⋮ 7 (đpcm)
1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{97}\right)\)
\(=30\left(1+2^4+...+2^{96}\right)⋮30\)
2:
\(B=3+3^2+3^3+...+3^{2022}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)
\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)
\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)
\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)
Dòng thứ 5 cậu có thể làm như thế này , ta có :
10a + b + 10b + a
= (10a + a) + (10b + b)
= 11a + 11b
= 11(a + b) => Chia hết cho 11
a)121980-2100 =(...6)-(...6)=...chia hết 10
b)191981+111980=(...9)+(...1)=...0chia hết 10