Tìm giá trị nhỏ nhất của biểu thức :
A=5+2x2+4y2+4xy-8x-12y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=x^2-3x+10\)
\(M=x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}+\dfrac{31}{4}\)
\(M=\left(x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}\right)+\dfrac{31}{4}\)
\(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\)
Mà: \(\left(x-\dfrac{3}{2}\right)^2\ge0\) nên: \(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)
Dấu "=" xảy ra
\(\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}=\dfrac{31}{4}\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)
Vậy: \(M_{min}=\dfrac{31}{4}\) với \(x=\dfrac{3}{2}\)
b) \(N=2x^2+5y^2+4xy+8x-4y-100\)
\(N=x^2+x^2+4y^2+y^2+4xy+8x-4y-120+16+4\)
\(N=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-120\)
\(N=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\)
Mà:
\(\left\{{}\begin{matrix}\left(x+2y\right)^2\ge0\\\left(x+4\right)^2\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\) nên \(N=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge120\)
Dấu "=" xảy ra:
\(\left\{{}\begin{matrix}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4+2y=0\\x=-4\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-4\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)
Vậy: \(N_{min}=120\) khi \(\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)
\(A=x^4+2x^2-8x+2019\) \(=x^4-2x^2+1+4x^2-8x+4+2014\)
\(=\left(x^2-1\right)^2+4\left(x-1\right)^2+2014\ge2014\forall x\)
" = " \(\Leftrightarrow x=1\)
\(T=-2\left(x^2+y^2+1-2xy+2x-2y\right)-2y^2+8y+2004\)
\(T=-2\left(x-y+1\right)^2-2\left(y-2\right)^2+2012\le2012\)
\(T_{max}=2012\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
a) Từ M = x − 3 2 2 + 31 4 ≥ 31 4 ⇒ M min = 31 4 ⇔ x = 3 2 .
b) Ta có N = ( x + 2 y ) 2 + ( y – 2 ) 2 + ( x + 4 ) 2 – 120 ≥ - 120 .
Tìm được N min = -120 Û x = -4 và y = 2.
\(A=-x^2-4y^2+2x-12y-10\)
\(A=-\left(x^2-2x+1\right)-\left(4y^2-12y+9\right)\)
\(A=-\left(x-1\right)^2-\left(2y+3\right)^2\)
Vậy\(A_{max}=0\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)
Đặt \(K=4x^2+2y^2+4xy-16x-12y+5\)
\(K=\left(4x^2+4xy+y^2\right)+y^2-16x-12y+5\)
\(K=\left[\left(2x+y\right)^2-2\left(2x+y\right).4+16\right]+\left(y^2-4y+4\right)-15\)
\(K=\left(2x+y-4\right)^2+\left(y-2\right)^2-15\)
Mà \(\left(2x+y-4\right)^2\ge0\forall x;y\)
\(\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow K\ge-15\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}2x+y-4=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy \(K_{Min}=-15\Leftrightarrow\left(x;y\right)=\left(1;2\right)\)
Lời giải:
$A=(x^2+4y^2+4xy)+x^2+5-8x-12y$
$=(x+2y)^2-6(x+2y)+x^2+5-2x$
$=(x+2y)^2-6(x+2y)+9+(x^2-2x+1)-5$
$=(x+2y-3)^2+(x-1)^2-5\geq 0+0-5=-5$
Vậy $A_{\min}=-5$. Giá trị này đạt được khi $x+2y-3=x-1=0$
$\Leftrightarrow x=1; y=1$