Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phương trình:
\(x+5-\sqrt{3x+1}-2\sqrt{4-x}=0\)
ĐKXĐ: \(-\dfrac{1}{3}\le x\le4\)
\(\Leftrightarrow x+5=\sqrt{3x+1}+2\sqrt{4-x}\)
Ta có:
\(VP=1.\sqrt{3x+1}+2.\sqrt{4-x}\le\dfrac{1}{2}\left(1+3x+1\right)+\dfrac{1}{2}\left(4+4-x\right)=x+5\)
\(\Rightarrow VP\le VT\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\sqrt{3x+1}=1\\\sqrt{4-x}=2\end{matrix}\right.\) \(\Leftrightarrow x=0\)
ĐKXĐ: \(-\dfrac{1}{3}\le x\le4\)
\(\Leftrightarrow x+5=\sqrt{3x+1}+2\sqrt{4-x}\)
Ta có:
\(VP=1.\sqrt{3x+1}+2.\sqrt{4-x}\le\dfrac{1}{2}\left(1+3x+1\right)+\dfrac{1}{2}\left(4+4-x\right)=x+5\)
\(\Rightarrow VP\le VT\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\sqrt{3x+1}=1\\\sqrt{4-x}=2\end{matrix}\right.\) \(\Leftrightarrow x=0\)