Cho tam giac ABC co ba duong cao AD ,BF,CF cat nhau tai H
a, CM EA×EC=EH×EB
b,AF×AB=AH×AD
c,BH×BF+CH×CF=CB^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác ABE và tam giác ACF có:
\(\widehat{AFC}=\widehat{AEB}\)
\(\widehat{A}\) chung
=> tam giác ABE và tam giác ACF đồng dạng
\(\Rightarrow\dfrac{AF}{AE}=\dfrac{FC}{BE}=\dfrac{AC}{AB}\Rightarrow\dfrac{AF}{AE}=\dfrac{AC}{AB}\Rightarrow AF.AB=AE.AC\)
đó vậy là xong ý a rồi những ý khác tương tự. Bạn phải biết cách chọn tỉ số chính xác ở bài toán này nhá :3
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét ΔHFB vuông tại Fvà ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng vơi ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE
c: Xét ΔBFH vuông tại F và ΔBEA vuông tại E có
góc FBH chung
=>ΔBFH đồng dạng với ΔBEA
=>BF/BE=BH/BA
=>BF*BA=BH*BE
d: Xét ΔCEH vuông tại E và ΔCFA vuông tại F có
góc ECH chung
=>ΔCEH đồng dạng với ΔCFA
=>CE/CF=CH/CA
=>CE*CA=CF*CH
\(DM\)\(\perp\)\(AC\)
\(BE\)\(\perp\)\(AC\)
suy ra: \(DM//BE\)
\(\Delta CBE\)có \(DM//BE\) áp dụng định lý Ta-lét ta có:
\(\frac{CD}{BD}=\frac{CM}{EM}\)
\(\Delta CBH\) có \(DK//BH\)theo hệ quả định lý Ta-lét ta có:
\(\frac{DK}{BH}=\frac{CK}{CH}\) (1)
\(\Delta CEH\) có \(KM//EH\) theo hệ quả định lý Ta-lét ta có:
\(\frac{KM}{EH}=\frac{CK}{CH}\) (2)
Từ (1) và (2) suy ra: \(\frac{DK}{BH}=\frac{KM}{EH}\)
HAY \(\frac{BH}{EH}=\frac{DK}{KM}\)
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: góc AHG=góc BHD=90 độ-góc HBD=góc ACB
góc AGH=1/2*sđ cung AB=góc ACB
=>góc AHG=góc AGH
=>ΔAGH cân tại A
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao
a: Xét tư giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
Xét tứ giác CDHE có
góc CDH+góc CEH=180 độ
=>CDHE là tứ giác nội tiếp
b: CDHE là tứ giác nội tiếp
=>gó BED=góc FCB
góc FEH=góc BAD
mà góc FCB=góc BAD
nên góc BED=góc FEB
=>EB là phân giác của góc FED
c: góc IEO=góc IEH+góc OEH
=góc IHE+góc OBE
=góc BHD+góc CBH=90 độ
=>IE là tiếp tuyến của (O)