K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

Giả sử AE cắt BC tại D. Khi đó ^AEC là góc ngoài tại đỉnh E của tam giác EDC => ^EDC = 150 độ - 65 độ = 85 độ.

Lại có ^EDC là góc ngoài tại đỉnh D của tam giác ADB => .... bạn tự giải quyết ^_^.

29 tháng 7 2017

trong tứ giác tổng các góc =360ota có

\(\widehat{AEC}+\widehat{B}+\widehat{C}+\widehat{A}=360^O\)

\(\Leftrightarrow\widehat{A}=360-\left(\widehat{B}+\widehat{C}+\widehat{AEC}\right)\Leftrightarrow\widehat{A}=360-\left(50+65+150\right)\)

\(\Leftrightarrow\widehat{A}=360-265=95^O\)

Vậy góc A =95o

13 tháng 7 2023

     2\(\sqrt{\dfrac{16}{3}}\)  - 3\(\sqrt{\dfrac{1}{27}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{3}{3\sqrt{3}}\)  - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{1}{\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{16}{2\sqrt{3}}\) - \(\dfrac{2}{2\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{11}{2\sqrt{3}}\)

\(\dfrac{11\sqrt{3}}{6}\)

f, 2\(\sqrt{\dfrac{1}{2}}\)\(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{2}{\sqrt{2}}\) - \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{5\sqrt{2}}{4}\)

 

 

13 tháng 7 2023

(1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1- \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3+\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)

\(\dfrac{-4}{3-1}\)

\(\dfrac{-4}{2}\)

= -2

NV
16 tháng 4 2021

17.

\(f\left(x\right)>0;\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\left(luôn-đúng\right)\\\Delta'=\left(2m-1\right)^2-\left(3m^2-2m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2-2m-3< 0\)

\(\Leftrightarrow-1< m< 3\)

\(\Rightarrow m=\left\{0;1;2\right\}\)

18.

\(\pi< x< \dfrac{3\pi}{2}\Rightarrow cosx< 0\)

\(\Rightarrow cosx=-\sqrt{1-sin^2x}=-\dfrac{\sqrt{5}}{3}\)

\(\Rightarrow tanx=\dfrac{sinx}{cosx}=\dfrac{2\sqrt{5}}{5}\)

\(tan\left(x+\dfrac{\pi}{4}\right)=\dfrac{tanx+tan\dfrac{\pi}{4}}{1-tanx.tan\dfrac{\pi}{4}}=\dfrac{\dfrac{2\sqrt{5}}{5}+1}{1-\dfrac{2\sqrt{5}}{5}.1}=9+4\sqrt{5}\)

NV
16 tháng 4 2021

19.

\(a^2=b^2+c^2+bc\Rightarrow b^2+c^2-a^2=-bc\)

\(\Rightarrow cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{-bc}{2bc}=-\dfrac{1}{2}\)

\(\Rightarrow A=120^0\)

20.

Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=2\)

\(d\left(I;\Delta\right)=\dfrac{\left|2-1-3\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\)

Gọi H là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}IH=d\left(I;\Delta\right)\\AH=\dfrac{1}{2}AB\end{matrix}\right.\)

Áp dụng định lý Pitago trong tam giác vuông IAH:

\(IA^2=IH^2+AH^2\Leftrightarrow R^2=IH^2+AH^2\)

\(\Rightarrow AH=\sqrt{2}\Rightarrow AB=2AH=2\sqrt{2}\)

11 tháng 4 2021

7.

Phương trình đường tròn \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\) với tâm \(I=\left(a;b\right)\), bán kính \(R\)

\(\Rightarrow\) Tâm đường tròn \(\left(x-1\right)^2+\left(y+2\right)^2=4\) có tọa độ \(\left(1;-2\right)\)

Kết luận: Tâm đường tròn có tọa độ \(\left(1;-2\right)\).

11 tháng 4 2021

9.

Cos đối, sin bù, phụ chéo, khác \(\pi\) tan, kém \(\dfrac{\pi}{2}\) chéo sin

\(sin\left(x+\dfrac{\pi}{2}\right)=sin\left(\dfrac{\pi}{2}-\left(-x\right)\right)=cos\left(-x\right)=cosx\)

Kết luận: \(sin\left(x+\dfrac{\pi}{2}\right)=cosx\)

26 tháng 5 2016

nCO2=0,2 mol

GS 25,7 gam muối là muối K2CO3 =>nK2CO3=nCO2=0,2 mol

=>mK2CO3=0,2.138=27,6gam khác 25,7gam=>loại

GS 25,7 gam muối là KHCO3

nKHCO3=nCO2=0,2 mol

=>mKHCO3=100.0,2=20 gam khác 25,7 gam =>loại

Vậy 25,7 gam klg cả 2 muối tạo thành

CO2 +2KOH =>K2CO3 + H2O

x mol             =>x mol

CO2 + KOH =>KHCO3

y mol           =>y mol

nCO2=x+y=0,2

m muối =138x+100y=25,7

=>x=0,15 và y=0,05 mol

Tính CM dd KOH bạn à

nKOH=0,15.2+0,05=0,35 mol

CM dd KOH=0,35/0,2=1,75M

 

21 tháng 10 2021

\(d,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}=2+\sqrt{x+1}\\ \Leftrightarrow x-1=2+x+1+4\sqrt{x+1}\\ \Leftrightarrow4\sqrt{x+1}=-4\Leftrightarrow x\in\varnothing\left(4\sqrt{x+1}\ge0\right)\\ g,ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{\left(x+\sqrt{2x-1}\right)\left(x-\sqrt{2x-1}\right)}=2\\ \Leftrightarrow2x+2\sqrt{x^2-2x+1}=2\\ \Leftrightarrow\sqrt{\left(x-1\right)^2}=\dfrac{2-2x}{2}=1-x\\ \Leftrightarrow\left|x-1\right|=1-x\\ \Leftrightarrow\left[{}\begin{matrix}x-1=1-x\left(x\ge1\right)\\x-1=x-1\left(x< 1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x\in R\end{matrix}\right.\)

 

Ko đăng mấy cái linh tinh nhé bạn

Ko mình báo cáo cho bạn mất nik đó

23 tháng 1 2022

hãy dùng ad block để chặn quảng cáo

AH
Akai Haruma
Giáo viên
12 tháng 7 2023

Bạn nên chịu khó gõ đề ra khả năng được giúp sẽ cao hơn.

13 tháng 7 2023

Câu h của em đây nhé

h, ( 1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1 - \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))

\(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3-\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)

\(\dfrac{-4}{2}\)

= -2