Tìm GTLN của biểu thức :
B = \(\dfrac{2010}{4x+20\sqrt{x}+30}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(J=\frac{2010}{4x+20\sqrt{x}+30}\)
\(=\frac{2010}{\left(2\sqrt{x}\right)^2+2.2\sqrt{x}.5+25+5}\)
\(=\frac{2010}{\left(2\sqrt{x}+5\right)^2+5}\)
\(A_{max}\Leftrightarrow\frac{2010}{\left(2\sqrt{x}+5\right)^2+5}\)lớn nhất
\(\Rightarrow\left(2\sqrt{x}+5\right)^2+5\)nhỏ nhất
\(\Rightarrow\left(2\sqrt{x}+5\right)^2\)nhỏ nhất
Mà \(2\sqrt{x}+5\ge5\Rightarrow2\sqrt{x}+5=5\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\)
Với x = 0 \(\Rightarrow J_{max}=\frac{2010}{4.0+20\sqrt{0}+30}=\frac{2010}{30}=67\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)
c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ
\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)
a) Để biểu thức vô nghĩa thì \(\dfrac{3x-2}{5}-\dfrac{x-4}{3}=0\)
\(\Leftrightarrow\dfrac{3x-2}{5}=\dfrac{x-4}{3}\)
\(\Leftrightarrow3\left(3x-2\right)=5\left(x-4\right)\)
\(\Leftrightarrow9x-6=5x-20\)
\(\Leftrightarrow9x-5x=-20+6\)
\(\Leftrightarrow4x=-14\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
\(a,F=\dfrac{x^2+x+4x^2+2-x^2+3x-2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x}{x-1}\\ b,\left|x+2\right|=1\Leftrightarrow\left[{}\begin{matrix}x=1-2=-1\left(ktm\right)\\x=-1-2=-3\end{matrix}\right.\Leftrightarrow x=-3\\ \Leftrightarrow F=\dfrac{-12}{-4}=3\\ c,K=F\left(x-1\right)-x^2-2021=4x-x^2-2021\\ K=-\left(x^2-4x+4\right)-2017=-\left(x-2\right)^2-2017\le-2017\\ K_{max}=-2017\Leftrightarrow x=2\left(tm\right)\)
Lời giải:
$\frac{3}{2}B=\frac{3\sqrt{x}}{x+\sqrt{x}+1}$
$\Rightarrow 1-\frac{3}{2}B=1-\frac{3\sqrt{x}}{x+\sqrt{x}+1}=\frac{x-2\sqrt{x}+1}{x+\sqrt{x}+1}=\frac{(\sqrt{x}-1)^2}{x+\sqrt{x}+1}\geq 0$ với mọi $x\geq 0$
$\Rightarrow \frac{3}{2}B\leq 1$
$\Rightarrow B\leq \frac{2}{3}$
Vậy $B_{\max}=\frac{2}{3}$ khi $\sqrt{x}-1=0\Leftrightarrow x=1$
\(B=\dfrac{2010}{4x+20\sqrt{x}+30}\)
\(B=\dfrac{2010}{\left(2\sqrt{x}\right)^2+2\cdot2\sqrt{x}\cdot5+25+5}\)
\(B=\dfrac{2010}{\left(2\sqrt{x}+5\right)^2+5}\)
Ta có: \(\left(2\sqrt{x}+5\right)^2+5\ge5\)
\(\Rightarrow B=\dfrac{2010}{\left(2\sqrt{x}+5\right)^2+5}\le\dfrac{2010}{5}=402\)
Vậy: \(B_{min}=402\)