K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

a: Xét tứ giác OBME có 

\(\widehat{OBM}+\widehat{OEM}=180^0\)

Do đó: OBME là tứ giác nội tiếp

25 tháng 5 2022

Please, help meeeee!!!

 

a: Xét tứ giác CMON có \(\widehat{CMO}+\widehat{CNO}=90^0+90^0=180^0\)

nên CMON là tứ giác nội tiếp

=>C,M,O,N cùng thuộc một đường tròn

b: Xét (O) có

\(\widehat{CMA}\) là góc tạo bởi tiếp tuyến MC và dây cung MA

\(\widehat{ABM}\) là góc nội tiếp chắn cung AM

Do đó: \(\widehat{CMA}=\widehat{ABM}=\widehat{CBM}\)

Xét ΔCMA và ΔCBM có

\(\widehat{CMA}=\widehat{CBM}\)

\(\widehat{MCA}\) chung

Do đó: ΔCMA~ΔCBM

=>\(\dfrac{CM}{CB}=\dfrac{CA}{CM}\)

=>\(CM^2=CA\cdot CB\)

c: Xét (O) có

CM,CN là các tiếp tuyến

Do đó: CM=CN

=>C nằm trên đường trung trực của MN(1)

Ta có: OM=ON

=>O nằm trên đường trung trực của MN(2)

Từ (1),(2) suy ra OC là đường trung trực của MN

=>OC\(\perp\)MN tại H

Xét ΔCMO vuông tại M có MH là đường cao

nên \(CH\cdot CO=CM^2\)

=>\(CH\cdot CO=CA\cdot CB\)

=>\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)

Xét ΔCHA và ΔCBO có

\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)

\(\widehat{HCA}\) chung

Do đó: ΔCHA~ΔCBO

=>\(\widehat{CHA}=\widehat{CBO}\)

mà \(\widehat{CBO}=\widehat{OAB}\)(ΔOAB cân tại O)

nên \(\widehat{CHA}=\widehat{OAB}\)

17 tháng 12 2023

a: Xét (O) có

CD,CB là các tiếp tuyến

Do đó: CD=CB

=>C nằm trên đường trung trực của DB(1)

Ta có: OD=OB

=>O nằm trên đường trung trực của DB(2)

Từ (1) và (2) suy ra OC là đường trung trực của BD

=>OC\(\perp\)BD

b: Xét tứ giác OBCD có

\(\widehat{OBC}+\widehat{ODC}=90^0+90^0=180^0\)

=>OBCD là tứ giác nội tiếp

=>O,B,C,D cùng thuộc một đường tròn

c: Xét (O) có

\(\widehat{CDM}\) là góc tạo bởi tiếp tuyến DC và dây cung DM

\(\widehat{DAM}\) là góc nội tiếp chắn cung DM

Do đó: \(\widehat{CDM}=\widehat{DAM}\)

=>\(\widehat{CDM}=\widehat{CAD}\)

Xét ΔCDM và ΔCAD có

\(\widehat{CDM}=\widehat{CAD}\)

\(\widehat{DCM}\) chung

Do đó: ΔCDM đồng dạng với ΔCAD

=>\(\widehat{CMD}=\widehat{CDA}\)

a: ΔONP cân tại O

mà OK là đường trung tuyến

nên OK\(\perp\)NP tại K

Ta có: \(\widehat{OAM}=\widehat{OBM}=\widehat{OKM}=90^0\)

=>O,A,M,B,K cùng thuộc đường tròn đường kính OM

b: Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của BA(1)

OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔOAM vuông tại A có AI là đường cao

nên \(OI\cdot OM=OA^2=R^2\)

Xét ΔOAM vuông tại A có AI là đường cao

nên \(OI\cdot IM=IA^2\)

c: AC\(\perp\)BM

OB\(\perp\)BM

Do đó: OB//AC

=>OB//AH

BD\(\perp\)MA

OA\(\perp\)MA

Do đó: BD//OA

=>BH//OA

Xét tứ giác OBHA có

OB//HA

OA//HB

Do đó: OBHA là hình bình hành

Hình bình hành OBHA có OB=OA

nên OBHA là hình thoi

d: OBHA là hình thoi

=>OH là đường trung trực của BA

mà M nằm trên đường trung trực của BA(cmt)

nên O,H,M thẳng hàng