K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)

9 tháng 6 2015

Bài 1: 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn) => đpcm

Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.

Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm

Bài 4 : 1 + 2 + ... + x = 55

Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)

Tổng trên là : (x + 1) . x : 2 = 55

=> (x + 1) . x = 110 = 11 . 10

=> x = 10

9 tháng 6 2015

Cho mình làm lại nha :

Bài 1: Không. Vì 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn) 

Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2. =>

Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm

Bài 4 : 1 + 2 + ... + x = 55

Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)

Tổng trên là : (x + 1) . x : 2 = 55

=> (x + 1) . x = 110 = 11 . 10

=> x = 10