Sắp xếp các số thực:
\(-3,2;1;-\frac{1}{2};7,4;0;-1,5\)
a) theo thứ tự từ nhỏ đến lớn.
b) theo thứ tự từ nhỏ đến lớn của các giá trị tuyệt đối của chúng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(-\frac{2}{3} = -0,\left( 6 \right);\,\,\,\,\,4,1;\,\,\, - \sqrt 2 = - 1,414...;\,\,\,\,3,2;\\\pi = 3,141...;\,\,\,\, - \frac{3}{4} = - 0,75;\,\,\,\,\frac{7}{3} = 2,\left( 3 \right)\).
Do \( - 1,414... < - 0,75 < -0,\left( 6 \right) < 2,\left( 3 \right) < 3,141... < 3,2 < 4,1\)
Nên \( - \sqrt 2 < - \frac{3}{4} < -\frac{2}{3} < \frac{7}{3} < \pi < 3,2 < 4,1.\)
\(\left| { - 3,2} \right| = 3,2;\,\,\,\,\,\left| {2,13} \right| = 2,13;\,\,\,\left| {\, - \sqrt 2 } \right| = \sqrt 2 = 1,41..;\,\,\,\,\left| { - \frac{3}{7}} \right| = \frac{3}{7} = 0,42...\)
Do \(0,42 < 1,41... < 2,13 < 3,2\) nên:
\(\left| { - \frac{3}{7}} \right| < \left| { - \sqrt 2 } \right| < \left| {2,13} \right| < \left| { - 3,2} \right|\).
- Sắp xếp theo thứ tự tăng dần của cột Tốt
- Sắp xếp theo thứ tự giảm dần của cột Sĩ số
- Kết quả bảng dữ liệu được sắp xếp theo thứ tự trên một cột chính, nếu có nhiều dòng có giá trị khác nhau trên cột chính thì chúng sẽ được sắp xếp theo thứ tự trên cột phụ (khác với cột chính). Ví dụ, trong hoạt động trên, cột Sĩ số được coi là cột chính, cột Tốt là cột phụ. Do đó, cách sắp xếp số lượng học sinh xếp loại tốt của các lớp có cùng sĩ số theo thứ tự tăng dần của cột tốt.
# Nhập dãy số từ bàn phím
lst = list(map(int, input("Nhập dãy số cách nhau bởi dấu cách: ").split()))
# Sắp xếp dãy số theo thuật toán sắp xếp chọn
for i in range(len(lst)):
min_idx = i
for j in range(i+1, len(lst)):
if lst[j] < lst[min_idx]:
min_idx = j
lst[i], lst[min_idx] = lst[min_idx], lst[i]
# In kết quả ra màn hình
print("Dãy số đã sắp xếp:", lst)
#include <bits/stdc++.h>
using namespace std;
long long i,n,t,x;
int main()
{
cin>>n;
t=0;
for (i=1; i<=n; i++)
{
cin>>x;
if (x>0) t=t+x;
}
cout<<t;
return 0;
}