K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{4}{5}\\\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\left(x,y\ne0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{4}{5}\\\dfrac{1}{x}+\dfrac{1}{x}=\dfrac{4}{5}+\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{4}{5}\\\dfrac{2}{x}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}+\dfrac{1}{y}=\dfrac{4}{5}\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{\dfrac{4}{5}-\dfrac{1}{2}}\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{10}{3}\\x=2\end{matrix}\right.\)

8 tháng 1 2018

\(a.\left\{{}\begin{matrix}4\dfrac{1}{x}+\dfrac{1}{y}=12\\\dfrac{1}{x}+\dfrac{1}{y}=-3\end{matrix}\right.\) (1)

ĐK xác định : x≠0 ; y≠0

Đặt ẩn phụ : a = \(\dfrac{1}{x}\) ; b = \(\dfrac{1}{y}\)

Thay vào (1) ta được :

\(\left\{{}\begin{matrix}4a+b=12\\a+b=-3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}3a=15\\a+b=-3\end{matrix}\right.< =>\left\{{}\begin{matrix}a=5\\b=-8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{1}{8}\end{matrix}\right.\)

Vậy S = {(\(\dfrac{1}{5};-\dfrac{1}{8}\))}

\(b.\left\{{}\begin{matrix}5\dfrac{1}{x}+2\dfrac{1}{y}=6\\2\dfrac{1}{x}-\dfrac{1}{y}=3\end{matrix}\right.\) (2)

ĐK xác định : x≠0 ; y≠0

Đặt ẩn phụ : a = 1/x ; b = 1/y

Thay vào (2) ta được : \(\left\{{}\begin{matrix}5a+2b=6\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}5a+2b=6\\4a-2b=6\end{matrix}\right.< =>\left\{{}\begin{matrix}9a=12\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=\dfrac{4}{3}\\b=-\dfrac{1}{3}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-3\end{matrix}\right.\)

Vậy S = {(\(\dfrac{3}{4};-3\) )}

c) \(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.\)

ĐK xác định : x≠0 ; y ≠0

Áp dụng quy tác cộng đại số ta có :

\(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\3\dfrac{1}{x}-3\dfrac{1}{y}=15\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-3\dfrac{1}{y}=-13\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{3}{13}\\x=\dfrac{3}{28}\end{matrix}\right.\)

Vậy S = {(\(\dfrac{3}{28};\dfrac{3}{13}\))}

d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\)

ĐK xác định : x≠0 ; y≠0

áp dụng quy tắc cộng đại số ta có :

\(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.< =>\left\{{}\begin{matrix}2\dfrac{1}{x}-8\dfrac{1}{y}=10\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-5\dfrac{1}{y}=9\\\dfrac{1}{x}-4\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{5}{9}\\x=-\dfrac{5}{11}\end{matrix}\right.\)

Vậy S = {(\(-\dfrac{5}{11};-\dfrac{5}{9}\))}

e) ĐK xác định x≠0 ; y≠0

\(\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\6\dfrac{1}{x}-\dfrac{1}{y}=2\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\18\dfrac{1}{x}-3\dfrac{1}{y}=6\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-17\dfrac{1}{x}=-2\\\dfrac{1}{x}-3\dfrac{1}{y}=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=\dfrac{17}{2}\\y=-\dfrac{17}{22}\end{matrix}\right.\)

Vậy S={(\(\dfrac{17}{2};-\dfrac{17}{22}\))}

12 tháng 1 2019
https://i.imgur.com/NPx7OjZ.jpg
12 tháng 1 2019
https://i.imgur.com/cKHt1qr.jpg
16 tháng 6 2017

Hệ hai phương trình bậc nhất hai ẩn

Hệ hai phương trình bậc nhất hai ẩn

11 tháng 12 2022

1: \(\left\{{}\begin{matrix}\left|x-1\right|+\dfrac{2}{y}=2\\-\left|x-1\right|+\dfrac{4}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{y}=3\\\left|x-1\right|=2-\dfrac{2}{y}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=2-\dfrac{2}{2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{2;0\right\}\end{matrix}\right.\)

2: \(\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\2\left|x-1\right|+\dfrac{4}{y-1}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{9}{y-1}=-9\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=3-\dfrac{2}{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{3;-1\right\}\end{matrix}\right.\)

3: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-5}+\dfrac{12}{\sqrt{y}-2}=4\\\dfrac{2}{x-5}-\dfrac{1}{\sqrt{y}-2}=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{13}{\sqrt{y}-2}=13\\\dfrac{1}{x-5}=2-\dfrac{6}{\sqrt{y}-2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=9\\\dfrac{1}{x-5}=2-\dfrac{6}{3-2}=2-\dfrac{6}{1}=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x-5=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{4}\\y=9\end{matrix}\right.\)

Giải hệ sau :

Câu a :

\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\-x=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)

Vậy ...........................

Câu b :

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) . Ta có :

\(\left\{{}\begin{matrix}a+b=\dfrac{1}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{3}{5}\\3a+4b=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-b=-\dfrac{7}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{7}{5}\\a=-\dfrac{6}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{7}{5}\\\dfrac{1}{y}=-\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{5}{6}\end{matrix}\right.\)

Vậy..................

12 tháng 1 2018

\(a,\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\2x+10y=6\end{matrix}\right.\left\{{}\begin{matrix}11y=2\\2x+10y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x+10.\dfrac{2}{11}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x=\dfrac{46}{11}\end{matrix}\right.\left\{{}\begin{matrix}y=\dfrac{2}{11}\\x=\dfrac{23}{11}\end{matrix}\right.\)

28 tháng 12 2021

Xem lại đề

a: \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{2}{x}-\dfrac{8}{y}=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y}=11\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\\dfrac{1}{x}=-3+\dfrac{4}{y}=-3+4=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{36}{x-3}-\dfrac{15}{y+2}=189\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{44}{x-3}=176\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=\dfrac{1}{4}\\\dfrac{15}{y+2}=-13-\dfrac{8}{x-3}=-13-32=-45\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=-\dfrac{1}{3}-2=-\dfrac{7}{3}\end{matrix}\right.\)

17 tháng 8 2018

mk lm 1 bài còn lại bn lm tương tự nha :

a) điều kiện xác định : \(x\ge0;y\ge1\)

đặc \(a=\sqrt{x};b=\sqrt{y-1}\)

\(\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}a+2b=5\\4a-b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

ta có : \(a=1\Rightarrow\sqrt{x}=1\Leftrightarrow x=1\left(tmđk\right)\) ; \(b=2\Rightarrow\sqrt{y-1}=2\Leftrightarrow y=5\left(tmđk\right)\)

vậy phương trình có nghiệm duy nhất \(\left(x;y\right)=\left(1;5\right)\)

b) bn đặc : \(a=\dfrac{1}{x};b=\dfrac{1}{y+12}\)

c) bn đặc : \(a=\dfrac{x}{x+1};b=\dfrac{y}{y+1}\)

nhớ điều kiện nha

26 tháng 11 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}x< >\dfrac{3}{2}y\\x< >-\dfrac{y}{3}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{4}{2x-3y}+\dfrac{5}{3x+y}=-2\\\dfrac{-5}{2x-3y}+\dfrac{3}{3x+y}=21\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{20}{2x-3y}+\dfrac{25}{3x+y}=-10\\-\dfrac{20}{2x-3y}+\dfrac{12}{3x+y}=84\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{37}{3x+y}=74\\-\dfrac{5}{2x-3y}+\dfrac{3}{3x+y}=21\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x+y=\dfrac{1}{2}\\-\dfrac{5}{2x-3y}+3:\dfrac{1}{2}=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+y=\dfrac{1}{2}\\\dfrac{-5}{2x-3y}=15\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x+y=\dfrac{1}{2}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=\dfrac{3}{2}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}11x=\dfrac{7}{6}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{66}\\3y=2x+\dfrac{1}{3}=\dfrac{7}{33}+\dfrac{1}{3}=\dfrac{6}{11}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{7}{66}\\y=\dfrac{2}{11}\end{matrix}\right.\)(nhận)

b: ĐKXĐ: \(\left\{{}\begin{matrix}x< >y-2\\x< >-y+1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{7}{x-y+2}-\dfrac{5}{x+y-1}=\dfrac{9}{2}\\\dfrac{3}{x-y+2}+\dfrac{2}{x+y-1}=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{14}{x-y+2}-\dfrac{10}{x+y-1}=9\\\dfrac{15}{x-y+2}+\dfrac{10}{x+y-1}=20\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{29}{x-y+2}=29\\\dfrac{3}{x-y+2}+\dfrac{2}{x+y-1}=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-y+2=1\\3+\dfrac{2}{x+y-1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\\dfrac{2}{x+y-1}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-y=-1\\x+y-1=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\x+y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=2\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)(nhận)

c:

ĐKXĐ: \(\left\{{}\begin{matrix}y< >2x\\y< >-x\end{matrix}\right.\)

 \(\left\{{}\begin{matrix}\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1\\\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1\\\dfrac{3}{2x-y}-\dfrac{3}{x+y}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+y}=-1\\\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y=3\\2x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=6\\2x-y=3\end{matrix}\right.\)

=>x=2 và y=2x-3=4-3=1(nhận)

d:ĐKXĐ: \(\left\{{}\begin{matrix}x< >-y+1\\x< >\dfrac{1}{2}y-\dfrac{3}{2}\end{matrix}\right.\)

 \(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}+\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{15}{x+y-1}+\dfrac{5}{2x-y+3}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{19}{x+y-1}=\dfrac{19}{2}\\\dfrac{15}{x+y-1}+\dfrac{5}{2x-y+3}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y-1=2\\\dfrac{15}{2}+\dfrac{5}{2x-y+3}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\\dfrac{5}{2x-y+3}=7-\dfrac{15}{2}=-\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y=3\\2x-y+3=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\2x-y=-13\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=-10\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{3}\\y=3-x=3+\dfrac{10}{3}=\dfrac{19}{3}\end{matrix}\right.\left(nhận\right)\)

e:

ĐKXĐ: \(x\ne\pm2y\)

 \(\left\{{}\begin{matrix}\dfrac{6}{x-2y}+\dfrac{2}{x+2y}=3\\\dfrac{3}{x-2y}+\dfrac{4}{x+2y}=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{6}{x-2y}+\dfrac{2}{x+2y}=3\\\dfrac{6}{x-2y}+\dfrac{8}{x+2y}=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{6}{x+2y}=5\\\dfrac{3}{x-2y}+\dfrac{4}{x+2y}=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+2y=-\dfrac{6}{5}\\\dfrac{3}{x-2y}+4:\dfrac{-6}{5}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=-\dfrac{6}{5}\\\dfrac{3}{x-2y}=-1+4\cdot\dfrac{5}{6}=-1+\dfrac{10}{3}=\dfrac{7}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+2y=-\dfrac{6}{5}\\x-2y=\dfrac{9}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{3}{35}\\x-2y=\dfrac{9}{7}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{3}{70}\\2y=x-\dfrac{9}{7}=-\dfrac{87}{70}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{70}\\y=-\dfrac{87}{140}\end{matrix}\right.\left(nhận\right)\)