a)(x+1)(y+2)=4 d)2xy+6x+y=1
b)(2x-1)(y-1)=7 nhớ kẻ bảng ra cho mk nha
c)x+6=y(x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ( x + 1 ) . ( y + 2 ) = 4
Vì x,y là số tự nhiên nên:
TH1: \(\hept{\begin{cases}x+1=1\\y+2=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=2\end{cases}}\)
TH2: \(\hept{\begin{cases}x+1=2\\y+2=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=0\end{cases}}\)
b , ( 2x - 1 ) . ( y + 1 ) = 7
Vì x,y là số tự nhiên nên:
TH1: \(\hept{\begin{cases}2x-1=1\\y+1=7\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=6\end{cases}}\)
TH2: \(\hept{\begin{cases}2x-1=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=0\end{cases}}}\)
c , x + 6 = y . ( x - 1 )
\(\Leftrightarrow x-xy+y+6=0\)
\(\Leftrightarrow-x\left(y-1\right)+\left(y-1\right)=-7\)
\(\Leftrightarrow\left(y-1\right)\left(x-1\right)=7\)
Vì x,y là số tự nhiên nên:
TH1: \(\hept{\begin{cases}y-1=1\\x-1=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=8\end{cases}}}\)
TH2: \(\hept{\begin{cases}y-1=7\\x-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=8\\x=2\end{cases}}\)
d, 2xy + 6x + y = 1
\(\Leftrightarrow2x\left(y+3\right)+\left(y+3\right)=4\)
\(\Leftrightarrow\left(2x+1\right)\left(y+3\right)=4\)
Vì x,y là số tự nhiên nên::
\(\hept{\begin{cases}2x+1=1\\y+3=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}}\)
\(1,\dfrac{1}{1+x}=1-\dfrac{1}{1+y}+1-\dfrac{1}{1+z}=\dfrac{y}{1+y}+\dfrac{z}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Cmtt: \(\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(1+x\right)\left(1+z\right)}};\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân VTV
\(\Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8\sqrt{\dfrac{x^2y^2z^2}{\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2}}\\ \Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\dfrac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\\ \Leftrightarrow8xyz\le1\Leftrightarrow xyz\le\dfrac{1}{8}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{2}\)
\(2,\\ a,2x^2+y^2-2xy=1\\ \Leftrightarrow\left(x-y\right)^2+x^2=1\\ \Leftrightarrow\left(x-y\right)^2=1-x^2\ge0\\ \Leftrightarrow x^2\le1\Leftrightarrow\sqrt{x^2}\le1\Leftrightarrow\left|x\right|\le1\)
a) 3x( 2x + 3) -(2x+5)(3x-2)=8
<=> 6x^2+9x-6x^2+4x-15x+10=8
<=> -2x+10=8
<=> -2x= 8-10 = -2
<=> x=1
b) (3x-4)(2x+1)-(6x+5)(x-3)=3
<=> 6x^2+3x-8x-4-6x^2+18x-5x+15=3
<=> -8x+11=3
<=> -8x= -8
<=> x=1
c, 2(3x-1)(2x+5)-6(2x-1)(x+2)=-6
<=> 2(6x^2+15x-2x-5)-6(2x^2+4x-x-2)=6
<=> 2(6x^2+13x-5)-6(2x^2+3x-2)=6
<=> 12x^2+ 26x-10-12x^2-18x+12=6
<=> 8x+2=6
<=> 8x=4
<=> x= 1/2
d, 3xy(x+y)-(x+y)(x^2 +y^2+2xy)+y^3=27
<=> 3x2y+3xy2-(x+y)(x+y)2+y3=27
<=> 3x2y+3xy2-(x+y)3+y3=27
<=> 3x2y +3xy2 -x3-3x2y-3xy2-y3+y3=27
<=> -x3=27
<=> x= \(-\sqrt[3]{27}\)= -3
1, (2x-1)(y+1)=7
Vì x,y thuộc N => 2x-1 và y+1 thuộc N
=> 2x-1; y+1 thuộc Ư (7)={1;7}
Ta có bảng
2x-1 | 1 | 7 |
x | 1 | 4 |
y+1 | 7 | 1 |
y | 6 | 0 |
3, 2xy+6x+y=1
<=> 2x(y+3)+(y+3)=4
<=> (2x+1)(y+3)=4
Vì x, y thuộc N => 2x+1; y+3 thuộc N
=> 2x+1; y+3 thuộc Ư (4)={1;2;4}
Ta có bảng
2x+1 | 1 | 2 | 4 |
x | 0 | \(\frac{1}{2}\) | \(\frac{3}{2}\) |
y+3 | 4 | 2 | 1 |
y | 1 | -1 | -2 |
Vậy (x;y)=(0;1)
a: \(=\dfrac{6x^3+13x^2-5x}{2x+5}=\dfrac{6x^3+15x^2-2x^2-5x}{2x+5}=3x^2-x\)
b: \(=\dfrac{x^4-6x^3+12x^2-14x+3}{x^2-4x+1}\)
\(=\dfrac{x^4-4x^3+x^2-2x^3+8x^2-2x+3x^2-12x+3}{x^2-4x+1}\)
\(=x^2-2x+3\)
d: \(=\dfrac{\left(x+y\right)^2}{x+y}=x+y\)
Tìm x:
1. 3x (2x + 3) - (2x + 5).(3x - 2) = 8
\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=0 \)
\(\Leftrightarrow-2x+10=0\Leftrightarrow x=5\)
Vậy x = 5
2. 4x (x -1) - 3(x2 - 5) -x2 = (x - 3) - (x + 4)
\(\Leftrightarrow4x^2-4x-3x^2+15-x^2=x-3-x-4\)
\(\Leftrightarrow-4x+15=-7\)
\(\Leftrightarrow-4x=-22\Leftrightarrow x=\frac{11}{2}\)
Vậy x = \(\frac{11}{2}\)
3. 2 (3x -1) (2x +5) - 6 (2x - 1) (x + 2) = -6
\(\Leftrightarrow2\left(6x^2+15x-2x-5\right)-6\left(2x^2+4x-x-2\right)=-6\)
\(\Leftrightarrow12x^2+30x-4x-10-12x^2-24x+6x+12=-6\)
\(\Leftrightarrow8x=-8\Leftrightarrow x=-1\)
Vậy x = -1
4. 3 ( 2x - 1) (3x - 1) - (2x - 3) (9x - 1) - 3 = -3
\(\Leftrightarrow3\left(6x^2-2x-3x+1\right)-18x^2+2x+27x-3-3=-3\)
\(\Leftrightarrow18x^2-6x-9x+3-18x^2+2x+27x-6=-3\)
\(\Leftrightarrow14x=0\Leftrightarrow x=0\)
Vậy x = 0
5. (3x - 1) (2x + 7) - ( x + 1) (6x - 5) = (x + 2) - (x - 5)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5=7\)
\(\Leftrightarrow18x=9\Leftrightarrow x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
6. 3xy (x + y) - (x + y) (x2 + y2 + 2xy) + y3 = 27
\(\Leftrightarrow3x^2y+3xy^2-\left(x+y\right)^3+y^3=27\)
\(\Leftrightarrow3x^2y+3xy^2-x^3-y^3-3x^2y-3xy^2+y^3=27\)
\(\Leftrightarrow-x^3=27\)
\(\Leftrightarrow x=-3\)
Vậy x = -3
7. 3x (8x - 4) - 6x (4x - 3) = 30
\(\Leftrightarrow24x^2-12x-24x^2+12x=30\)
\(\Leftrightarrow0=30\) ( vô lý)
Vậy pt vô nghiệm
8. 3x (5 - 2x) + 2x (3x - 5) = 20
\(\Leftrightarrow15x-6x^2+6x^2-10x=20\)
\(\Leftrightarrow5x=20\Leftrightarrow x=4\)
Vậy x = 4
a: \(\left(x+1\right)\left(y+2\right)=4\)
=>\(\left(x+1;y+2\right)\in\left\{\left(1;4\right);\left(4;1\right);\left(-2;-2\right);\left(2;2\right);\left(-1;-4\right);\left(-4;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;2\right);\left(3;-1\right);\left(-3;-4\right);\left(1;0\right);\left(-2;-6\right);\left(-5;-3\right)\right\}\)
b: \(\left(2x-1\right)\left(y-1\right)=7\)
=>\(\left(2x-1;y-1\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;8\right);\left(4;2\right);\left(0;-6\right);\left(-3;0\right)\right\}\)
c: \(x+6=y\left(x-1\right)\)
=>\(x-1+7=y\left(x-1\right)\)
=>\(\left(x-1\right)\left(1-y\right)=-7\)
=>\(\left(x-1\right)\left(y-1\right)=7\)
=>\(\left(x-1;y-1\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;8\right);\left(8;2\right);\left(0;-6\right);\left(-6;0\right)\right\}\)
d: \(2xy+6x+y=1\)
=>\(2x\left(y+3\right)+y+3=4\)
=>\(\left(2x+1\right)\left(y+3\right)=4\)
=>\(\left(2x+1;y+3\right)\in\left\{\left(1;4\right);\left(-1;-4\right);\left(4;1\right);\left(-4;-1\right);\left(2;2\right);\left(-2;-2\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;1\right);\left(-1;-7\right);\left(\dfrac{3}{2};-2\right);\left(-\dfrac{5}{2};-4\right);\left(\dfrac{1}{2};-1\right);\left(-\dfrac{3}{2};-5\right)\right\}\)